scholarly journals On analytical methods for calculating the steady-state temperature field in a circular cylindrical shell

Author(s):  
A. I. Kashpar ◽  
V. N. Laptinskiy

The present paper presents two analytical methods for calculating the steady-state temperature field in a circular cylindrical shell. The effectiveness of the methods in terms of accuracy in comparison with the classical approach, based on Bessel functions, is analyzed. The proposed analytical algorithms contain relatively simple computational operations. Since they do not use special functions, the algorithms can be used to solve a wide range of problems.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3854
Author(s):  
Salvatore Musumeci ◽  
Luigi Solimene ◽  
Carlo Stefano Ragusa

In this paper, we propose a method for the identification of the differential inductance of saturable ferrite inductors adopted in DC–DC converters, considering the influence of the operating temperature. The inductor temperature rise is caused mainly by its losses, neglecting the heating contribution by the other components forming the converter layout. When the ohmic losses caused by the average current represent the principal portion of the inductor power losses, the steady-state temperature of the component can be related to the average current value. Under this assumption, usual for saturable inductors in DC–DC converters, the presented experimental setup and characterization method allow identifying a DC thermal steady-state differential inductance profile of a ferrite inductor. The curve is obtained from experimental measurements of the inductor voltage and current waveforms, at different average current values, that lead the component to operate from the linear region of the magnetization curve up to the saturation. The obtained inductance profile can be adopted to simulate the current waveform of a saturable inductor in a DC–DC converter, providing accurate results under a wide range of switching frequency, input voltage, duty cycle, and output current values.


Author(s):  
H. S. Tzou ◽  
R. Ye

Abstract Piezothermoelastic effects of distributed piezoelectric sensors and actuators are investigated. Vibration control of piezoelectric laminates subjected to a steady-state temperature field is studied. A new 3-D piezothermoelastic finite element with three internal degrees of freedom is formulated using a variational formulation. A system equation for the piezoelectric continuum exposed to combined elastic, electric, and thermal fields is formulated. Distributed sensing and control equations are derived. All these effects are studied in a case study.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zequn Hong ◽  
Xiangdong Hu

In order to solve the problem of sealing water and bearing capacity of a connected aisle in an underwater shield tunnel, a double-circle horizontal freezing method was adopted for ground reinforcement in the connected aisle of Maliuzhou Tunnel, which is China’s first shield tunnel with superlarge diameter built in a composite stratum. This paper proposed a new double-row-pipe freezing model for the calculation of frozen wall thickness based on analytical solution to steady-state temperature field. Besides, field measurement and transient numerical studies of the active freezing period were also carried out to study the freeze-sealing effect. The results show that frozen wall thickness obtained by analytical solutions agrees well with numerical simulation results, which verifies the applicability of the newly proposed calculation method. Field analysis indicates that soil temperature gradually approaches a stable value which is far below the freezing point, and a reliable water-sealing curtain can be formed around the designed connected aisle. Maximum impact of soil excavation on the frozen wall is about 10°C, and reducing exposure time of excavation surface can effectively alleviate the weakening of frozen wall. To obtain comprehensive analysis for freezing wall thickness, a more reasonable arrangement of temperature-measuring holes is expected in future freezing engineering.


2004 ◽  
Vol 132 (2-3) ◽  
pp. 241-251 ◽  
Author(s):  
Francesca Quareni ◽  
Andrea Tallarico ◽  
Michele Dragoni

2009 ◽  
Vol 87-88 ◽  
pp. 518-523 ◽  
Author(s):  
Jing Li ◽  
Yan He ◽  
Zhen Chao Chen

Based on the Adina finite element analysis software, 3D axisymmetric finite element analysis model of the 205/75R15 PCR tire was established, the steady temperature field of rolling tire was simulated, and the thermal distribution colored cloud diagram of steady-state temperature field of 3D rolling tire which directly shows the temperature distribution of each section of tire was analyzed to offer certain guidance to the improvement of tire structure and rubber formula.


1971 ◽  
Vol 38 (2) ◽  
pp. 538-540 ◽  
Author(s):  
J.-M. Chern

Optimal design of an elastic rod for given total elongation is discussed when both the axial loads and the steady-state temperature field in the rod depend on the design. Numerical results are presented for a rod that carries a given mass at the tip and rotates about an axis through the root that is perpendicular to the axis of the rod, while tip and root are kept at different temperatures and the lateral surface of the rod is thermally insulated.


Author(s):  
Bo Zhu ◽  
YanHua Yang ◽  
Wenzheng Chen ◽  
Shiting Li

Based on the reactor physics and heat transfer parameter of rod-shaped fuel element, the steady state distribution and variation for rod-shaped assembly are analyzed and computed; using the virtual reality technology, 3D geometric entities of fuel element is constructed and divided into grid according to different condition; Through the normalized treatment for numerical results, the VR simulation environment for temperature field of fuel element is constructed. The research for field visualization has some reference value for core thermal design and operational safety analysis.


Sign in / Sign up

Export Citation Format

Share Document