scholarly journals Calcium and Oxalic Acid Contents of Sugar Beet Plant in Salinity Stress

2018 ◽  
Vol 51 (1) ◽  
Author(s):  
Mehdi Taghizadegan ◽  
Mahmoud Toorchi ◽  
Mohammad Moghadam Vahed ◽  
Samar Khayamim

2012 ◽  
Vol 26 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Darren E. Robinson ◽  
Kristen E. McNaughton

Trials were established in 2007, 2008, and 2009 in Ontario, Canada, to determine the effect of soil residues of saflufenacil on growth, yield, and quality of eight rotational crops planted 1 yr after application. In the year of establishment, saflufenacil was applied PRE to field corn at rates of 75, 100, and 200 g ai ha−1. Cabbage, carrot, cucumber, onion, pea, pepper, potato, and sugar beet were planted 1 yr later, maintained weed-free, and plant dry weight, yield, and quality measures of interest to processors for each crop were determined. Reductions in dry weight and yield of all grades of cucumber were determined at both the 100 and 200 g ha−1rates of saflufenacil. Plant dry weight, bulb number, and size and yield of onion were also reduced by saflufenacil at 100 and 200 g ha−1. Sugar beet plant dry weight and yield, but not sucrose content, were decreased by saflufenacil at 100 and 200 g ha−1. Cabbage plant dry weight, head size, and yield; carrot root weight and yield; and pepper dry weight, fruit number and size, and yield were only reduced in those treatments in which twice the field corn rate had been applied to simulate the effect of spray overlap in the previous year. Pea and potato were not negatively impacted by applications of saflufenacil in the year prior to planting. It is recommended that cabbage, carrot, cucumber, onion, pepper, and sugar beet not be planted the year after saflufenacil application at rates up to 200 g ha−1. Pea and potato can be safely planted the year following application of saflufenacil up to rates of 200 g ha−1.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9131
Author(s):  
Jie Cui ◽  
Xinyan Li ◽  
Junliang Li ◽  
Congyu Wang ◽  
Dayou Cheng ◽  
...  

Auxin response factor (ARF) proteins respond to biological and abiotic stresses and play important roles in regulating plant growth and development. In this study, based on the genome-wide database of sugar beet, 16 BvARF proteins were identified. A detailed investigation into the BvARF family is performed, including analysis of the conserved domains, chromosomal locations, phylogeny, exon-intron structure, conserved motifs, subcellular localization, gene ontology (GO) annotations and expression profiles of BvARF under salt-tolerant condition. The majority of BvARF proteins contain B3 domain, AUX_RESP domain and AUX/IAA domain and a few lacked of AUX/IAA domain. Phylogenetic analysis suggests that the 16 BvARF proteins are clustered into six groups. Expression profile analysis shows that most of these BvARF genes in sugar beet under salinity stress were up-regulated or down-regulated to varying degrees and nine of the BvARF genes changed significantly. They were thought to have a significant response to salinity stress. The current study provides basic information for the BvARF genes and will pave the way for further studies on the roles of BvARF genes in regulating sugar beet’s growth, development and responses to salinity stress.


Sign in / Sign up

Export Citation Format

Share Document