Segregation of IoT Traffic with Machine Learning Techniques

Author(s):  
Shilpa P Khedkar, Et. al.

The Internet of Things (IoT) is emerging as a new infrastructure of 21st century. With the advent of cloud computing and evolution of IoT, the classification of traffic over IoT networks has attained significance importance due to rapid growth of users and devices. It is need of the hour to isolate the benign traffic from the malevolent traffic and to channelise the normal traffic to the intended destination to suffice the QoS requirements of the IoT users. A proficient classification mechanism in IoT environment should be capable enough to classify the heavy traffic in a fast manner, to deflect the malevolent traffic on time and to transmit the benign traffic to the designated nodes for serving the needs of the users. In this manuscript, machine learning and deep neural networks-based approaches are proposed for segregating the IoT traffic which eventually enhances the throughput of IoT networks and reduces the congestion over IoT channels. This paper also provides insights into the future research endeavors to channelise the normal traffic and to handle the malicious traffic

2021 ◽  
Vol 35 (4) ◽  
pp. 349-357
Author(s):  
Shilpa P. Khedkar ◽  
Aroul Canessane Ramalingam

The Internet of Things (IoT) is a rising infrastructure of 21st century. The classification of traffic over IoT networks is attained significance importance due to rapid growth of users and devices. It is need of the hour to isolate the normal traffic from the malicious traffic and to assign the normal traffic to the proper destination to suffice the QoS requirements of the IoT users. Detection of malicious traffic can be done by continuously monitoring traffic for suspicious links, files, connection created and received, unrecognised protocol/port numbers, and suspicious Destination/Source IP combinations. A proficient classification mechanism in IoT environment should be capable enough to classify the heavy traffic in a fast manner, to deflect the malevolent traffic on time and to transmit the benign traffic to the designated nodes for serving the needs of the users. In this work, adaboost and Xgboost machine learning algorithms and Deep Neural Networks approach are proposed to separate the IoT traffic which eventually enhances the throughput of IoT networks and reduces the congestion over IoT channels. The result of experiment indicates a deep learning algorithm achieves higher accuracy compared to machine learning algorithms.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 181 ◽  
Author(s):  
Giuliano Vitali ◽  
Matteo Francia ◽  
Matteo Golfarelli ◽  
Maurizio Canavari

In this study, we analyze how crop management will benefit from the Internet of Things (IoT) by providing an overview of its architecture and components from agronomic and technological perspectives. The present analysis highlights that IoT is a mature enabling technology with articulated hardware and software components. Cheap networked devices can sense crop fields at a finer grain to give timeliness warnings on the presence of stress conditions and diseases to a wider range of farmers. Cloud computing allows reliable storage, access to heterogeneous data, and machine-learning techniques for developing and deploying farm services. From this study, it emerges that the Internet of Things will draw attention to sensor quality and placement protocols, while machine learning should be oriented to produce understandable knowledge, which is also useful to enhance cropping system simulation systems.


Author(s):  
K. Selvakuberan ◽  
M. Indra Devi ◽  
R. Rajaram

The explosive growth of the Web makes it a very useful information resource to all types of users. Today, everyone accesses the Internet for various purposes and retrieving the required information within the stipulated time is the major demand from users. Also, the Internet provides millions of Web pages for each and every search term. Getting interesting and required results from the Web becomes very difficult and turning the classification of Web pages into relevant categories is the current research topic. Web page classification is the current research problem that focuses on classifying the documents into different categories, which are used by search engines for producing the result. In this chapter we focus on different machine learning techniques and how Web pages can be classified using these machine learning techniques. The automatic classification of Web pages using machine learning techniques is the most efficient way used by search engines to provide accurate results to the users. Machine learning classifiers may also be trained to preserve the personal details from unauthenticated users and for privacy preserving data mining.


2012 ◽  
pp. 50-65 ◽  
Author(s):  
K. Selvakuberan ◽  
M. Indra Devi ◽  
R. Rajaram

The explosive growth of the Web makes it a very useful information resource to all types of users. Today, everyone accesses the Internet for various purposes and retrieving the required information within the stipulated time is the major demand from users. Also, the Internet provides millions of Web pages for each and every search term. Getting interesting and required results from the Web becomes very difficult and turning the classification of Web pages into relevant categories is the current research topic. Web page classification is the current research problem that focuses on classifying the documents into different categories, which are used by search engines for producing the result. In this chapter we focus on different machine learning techniques and how Web pages can be classified using these machine learning techniques. The automatic classification of Web pages using machine learning techniques is the most efficient way used by search engines to provide accurate results to the users. Machine learning classifiers may also be trained to preserve the personal details from unauthenticated users and for privacy preserving data mining.


2021 ◽  
pp. 1-11
Author(s):  
Stephanie M. Helman ◽  
Elizabeth A. Herrup ◽  
Adam B. Christopher ◽  
Salah S. Al-Zaiti

Abstract Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research entails one of the most promising clinical applications, in which timely and accurate diagnosis is essential. The objective of this scoping review is to summarise the application and clinical utility of machine learning techniques used in paediatric cardiology research, specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising the diagnosis and assessment of CHD. Deep learning and support vector machine were the most commonly used algorithms, accounting for an overall diagnostic accuracy > 0.80. Clinical applications primarily focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and cardiac MRIs. The range of these applications and directions of future research are discussed in this scoping review.


Author(s):  
Vusi Sithole ◽  
Linda Marshall

<span lang="EN-US">Patterns for the internet of things (IoT) which represent proven solutions used to solve design problems in the IoT are numerous. Similar to object-oriented design patterns, these IoT patterns contain multiple mutual heterogeneous relationships. However, these pattern relationships are hidden and virtually unidentified in most documents. In this paper, we use machine learning techniques to automatically mine knowledge graphs to map these relationships between several IoT patterns. The end result is a semantic knowledge graph database which outlines patterns as vertices and their relations as edges. We have identified four main relationships between the IoT patterns-a pattern is similar to another pattern if it addresses the same use case problem, a large-scale pattern uses a small- scale pattern in a lower level layer, a large pattern is composed of multiple smaller scale patterns underneath it, and patterns complement and combine with each other to resolve a given use case problem. Our results show some promising prospects towards the use of machine learning techniques to generate an automated repository to organise the IoT patterns, which are usually extracted at various levels of abstraction and granularity.</span>


Author(s):  
Ritu Chauhan ◽  
Sandhya Avasthi ◽  
Bhavya Alankar ◽  
Harleen Kaur

The IoT or the internet of things started as a technology to connect everyday objects over the internet, which has evolved into something big and invaded into every single aspect of our lives. As technology is gaining momentum, IoT-based smart devices usage among users is expanding, which generates massive data at our disposal across various domains. The authors have systematically studied the taxonomy of data analytics and the benefits of using advanced machine learning techniques in converting data into valuable assets. In the studies, they have identified and did due diligence on different smart home systems, their features, and configuration. During this course of study, they have also identified the vulnerability of such a system and threats associated with these vulnerabilities in a secure smart home environment.


Sign in / Sign up

Export Citation Format

Share Document