scholarly journals Analysis On Deep Learning Approaches For Timely Detection Of Osteoarthritis

Author(s):  
R Kanthavel Et.al

Osteoarthritis is mainly a familiar kind of arthritis when an elastic tissue named Cartilage that softens the tops of the bones, cracks down. The Person with osteoarthritis can encompass joint pain, inflexibility, or inflammation and there is no particular examination for osteoarthritis and physicians take the amalgamation of both medical cum clinical record and X-rays imaging analysis to make a diagnosis of the state. Osteoarthritis is generally only detected following ache and bone scratch and in advance, analysis could permit for ultimate involvement to avoid cartilage worsening and bone injury. Through machine-learning algorithms, the system can be trained to automatically distinguish among people who would develop osteoarthritis and persons who would not with the detection of exact biochemical variances in the midpoint of the knee’s cartilage. The outcome of the Machine learning Techniques will give the persons who are pre-symptomatic by the occasion of the baseline imaging and also the reduction in liquid concentration. In this study, we present the analysis of various deep learning techniques for timely detection of osteoarthritis disease. Several subsets of machine learning called deep learning techniques have been in use for the timely detection of osteoarthritis disease; and therefore analysis is needed highly to choose the best as far as accuracy and reliability are concerned.

2022 ◽  
pp. 27-50
Author(s):  
Rajalaxmi Prabhu B. ◽  
Seema S.

A lot of user-generated data is available these days from huge platforms, blogs, websites, and other review sites. These data are usually unstructured. Analyzing sentiments from these data automatically is considered an important challenge. Several machine learning algorithms are implemented to check the opinions from large data sets. A lot of research has been undergone in understanding machine learning approaches to analyze sentiments. Machine learning mainly depends on the data required for model building, and hence, suitable feature exactions techniques also need to be carried. In this chapter, several deep learning approaches, its challenges, and future issues will be addressed. Deep learning techniques are considered important in predicting the sentiments of users. This chapter aims to analyze the deep-learning techniques for predicting sentiments and understanding the importance of several approaches for mining opinions and determining sentiment polarity.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5213 ◽  
Author(s):  
Donato Impedovo ◽  
Fabrizio Balducci ◽  
Vincenzo Dentamaro ◽  
Giuseppe Pirlo

Automatic traffic flow classification is useful to reveal road congestions and accidents. Nowadays, roads and highways are equipped with a huge amount of surveillance cameras, which can be used for real-time vehicle identification, and thus providing traffic flow estimation. This research provides a comparative analysis of state-of-the-art object detectors, visual features, and classification models useful to implement traffic state estimations. More specifically, three different object detectors are compared to identify vehicles. Four machine learning techniques are successively employed to explore five visual features for classification aims. These classic machine learning approaches are compared with the deep learning techniques. This research demonstrates that, when methods and resources are properly implemented and tested, results are very encouraging for both methods, but the deep learning method is the most accurately performing one reaching an accuracy of 99.9% for binary traffic state classification and 98.6% for multiclass classification.


Computers ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Jurgita Kapočiūtė-Dzikienė ◽  
Robertas Damaševičius ◽  
Marcin Woźniak

We describe the sentiment analysis experiments that were performed on the Lithuanian Internet comment dataset using traditional machine learning (Naïve Bayes Multinomial—NBM and Support Vector Machine—SVM) and deep learning (Long Short-Term Memory—LSTM and Convolutional Neural Network—CNN) approaches. The traditional machine learning techniques were used with the features based on the lexical, morphological, and character information. The deep learning approaches were applied on the top of two types of word embeddings (Vord2Vec continuous bag-of-words with negative sampling and FastText). Both traditional and deep learning approaches had to solve the positive/negative/neutral sentiment classification task on the balanced and full dataset versions. The best deep learning results (reaching 0.706 of accuracy) were achieved on the full dataset with CNN applied on top of the FastText embeddings, replaced emoticons, and eliminated diacritics. The traditional machine learning approaches demonstrated the best performance (0.735 of accuracy) on the full dataset with the NBM method, replaced emoticons, restored diacritics, and lemma unigrams as features. Although traditional machine learning approaches were superior when compared to the deep learning methods; deep learning demonstrated good results when applied on the small datasets.


Author(s):  
Joy Iong-Zong Chen ◽  
Kong-Long Lai

The design of an analogue IC layout is a time-consuming and manual process. Despite several studies in the sector, some geometric restrictions have resulted in disadvantages in the process of automated analogue IC layout design. As a result, analogue design has a performance lag when compared to manual design. This prevents the deployment of a large range of automated tools. With the recent technical developments, this challenge is resolved using machine learning techniques. This study investigates performance-driven placement in the VLSI IC design process, as well as analogue IC performance prediction by utilizing various machine learning approaches. Further, several amplifier designs are simulated. From the simulation results, it is evident that, when compared to the manual layout, an improved performance is obtained by using the proposed approach.


Author(s):  
Anna Ferrari ◽  
Daniela Micucci ◽  
Marco Mobilio ◽  
Paolo Napoletano

AbstractHuman activity recognition (HAR) is a line of research whose goal is to design and develop automatic techniques for recognizing activities of daily living (ADLs) using signals from sensors. HAR is an active research filed in response to the ever-increasing need to collect information remotely related to ADLs for diagnostic and therapeutic purposes. Traditionally, HAR used environmental or wearable sensors to acquire signals and relied on traditional machine-learning techniques to classify ADLs. In recent years, HAR is moving towards the use of both wearable devices (such as smartphones or fitness trackers, since they are daily used by people and they include reliable inertial sensors), and deep learning techniques (given the encouraging results obtained in the area of computer vision). One of the major challenges related to HAR is population diversity, which makes difficult traditional machine-learning algorithms to generalize. Recently, researchers successfully attempted to address the problem by proposing techniques based on personalization combined with traditional machine learning. To date, no effort has been directed at investigating the benefits that personalization can bring in deep learning techniques in the HAR domain. The goal of our research is to verify if personalization applied to both traditional and deep learning techniques can lead to better performance than classical approaches (i.e., without personalization). The experiments were conducted on three datasets that are extensively used in the literature and that contain metadata related to the subjects. AdaBoost is the technique chosen for traditional machine learning, while convolutional neural network is the one chosen for deep learning. These techniques have shown to offer good performance. Personalization considers both the physical characteristics of the subjects and the inertial signals generated by the subjects. Results suggest that personalization is most effective when applied to traditional machine-learning techniques rather than to deep learning ones. Moreover, results show that deep learning without personalization performs better than any other methods experimented in the paper in those cases where the number of training samples is high and samples are heterogeneous (i.e., they represent a wider spectrum of the population). This suggests that traditional deep learning can be more effective, provided you have a large and heterogeneous dataset, intrinsically modeling the population diversity in the training process.


2021 ◽  
Author(s):  
Thiago Abdo ◽  
Fabiano Silva

The purpose of this paper is to analyze the use of different machine learning approaches and algorithms to be integrated as an automated assistance on a tool to aid the creation of new annotated datasets. We evaluate how they scale in an environment without dedicated machine learning hardware. In particular, we study the impact over a dataset with few examples and one that is being constructed. We experiment using deep learning algorithms (Bert) and classical learning algorithms with a lower computational cost (W2V and Glove combined with RF and SVM). Our experiments show that deep learning algorithms have a performance advantage over classical techniques. However, deep learning algorithms have a high computational cost, making them inadequate to an environment with reduced hardware resources. Simulations using Active and Iterative machine learning techniques to assist the creation of new datasets are conducted. For these simulations, we use the classical learning algorithms because of their computational cost. The knowledge gathered with our experimental evaluation aims to support the creation of a tool for building new text datasets.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 168
Author(s):  
Khatri Chandni ◽  
Prof. Mrudang Pandya ◽  
Dr. Sunil Jardosh

In recent years, Machine Learning techniques that are based on Deep Learning networks that show a great promise in research          communities.Successful methods for deep learning involve Artificial Neural Networks and Machine Learning. Deep Learning solves severa  problems in bioinformatics. Protein Structure Prediction is one of the most important fields that can be solving using Deep Learning  approaches.These protein are categorized on basis of occurrence of amino acid patterns occur to extract the feature. In these paper aimed to review work based on protein structure prediction solve using Deep Learning Networks. Objective is to review motivate and facilitatethese deep learn the network for predicting protein sequences using Deep Learning. 


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 518 ◽  
Author(s):  
Hafsa Khalid ◽  
Muzammil Hussain ◽  
Mohammed A. Al Ghamdi ◽  
Tayyaba Khalid ◽  
Khadija Khalid ◽  
...  

The purpose of this research was to provide a “systematic literature review” of knee bone reports that are obtained by MRI, CT scans, and X-rays by using deep learning and machine learning techniques by comparing different approaches—to perform a comprehensive study on the deep learning and machine learning methodologies to diagnose knee bone diseases by detecting symptoms from X-ray, CT scan, and MRI images. This study will help those researchers who want to conduct research in the knee bone field. A comparative systematic literature review was conducted for the accomplishment of our work. A total of 32 papers were reviewed in this research. Six papers consist of X-rays of knee bone with deep learning methodologies, five papers cover the MRI of knee bone using deep learning approaches, and another five papers cover CT scans of knee bone with deep learning techniques. Another 16 papers cover the machine learning techniques for evaluating CT scans, X-rays, and MRIs of knee bone. This research compares the deep learning methodologies for CT scan, MRI, and X-ray reports on knee bone, comparing the accuracy of each technique, which can be used for future development. In the future, this research will be enhanced by comparing X-ray, CT-scan, and MRI reports of knee bone with information retrieval and big data techniques. The results show that deep learning techniques are best for X-ray, MRI, and CT scan images of the knee bone to diagnose diseases.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Antonio Hernández-Blanco ◽  
Boris Herrera-Flores ◽  
David Tomás ◽  
Borja Navarro-Colorado

Educational Data Mining (EDM) is a research field that focuses on the application of data mining, machine learning, and statistical methods to detect patterns in large collections of educational data. Different machine learning techniques have been applied in this field over the years, but it has been recently that Deep Learning has gained increasing attention in the educational domain. Deep Learning is a machine learning method based on neural network architectures with multiple layers of processing units, which has been successfully applied to a broad set of problems in the areas of image recognition and natural language processing. This paper surveys the research carried out in Deep Learning techniques applied to EDM, from its origins to the present day. The main goals of this study are to identify the EDM tasks that have benefited from Deep Learning and those that are pending to be explored, to describe the main datasets used, to provide an overview of the key concepts, main architectures, and configurations of Deep Learning and its applications to EDM, and to discuss current state-of-the-art and future directions on this area of research.


2018 ◽  
Vol 7 (S1) ◽  
pp. 82-86
Author(s):  
V. Sudha ◽  
S. Mohan ◽  
S. Arivalagan

Agriculture is the backbone of Indian economy. Big data are emerging précised and viable analytical tool in agricultural research field. This review paper facilitates the farmers in selecting the right crops and appropriate cropping pattern for a particular locality. A modern trend in the Agriculture domain has made people realize the importance of big data. It provides a methodology for facing challenges in agricultural production, by applying this Algorithm, using machine learning techniques. The different machine learning techniques survey is presented in this paper to realize enhanced monitory benefits in a particular area. A study of machine learning algorithms for big data Analytic is also done and presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document