scholarly journals FOUNTAIN CODES AND OTHER CHANNEL CODING SCHEMES FOR PROTECTION OF TRANSPORT STREAMS OVER IP NETWORKS WITH PACKET ERASURE

Author(s):  
CLAUDIO ALEJANDRO SZABAS
Author(s):  
Jung Hyun Bae ◽  
Ahmed Abotabl ◽  
Hsien-Ping Lin ◽  
Kee-Bong Song ◽  
Jungwon Lee

AbstractA 5G new radio cellular system is characterized by three main usage scenarios of enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC), and massive machine type communications, which require improved throughput, latency, and reliability compared with a 4G system. This overview paper discusses key characteristics of 5G channel coding schemes which are mainly designed for the eMBB scenario as well as for partial support of the URLLC scenario focusing on low latency. Two capacity-achieving channel coding schemes of low-density parity-check (LDPC) codes and polar codes have been adopted for 5G where the former is for user data and the latter is for control information. As a coding scheme for data, 5G LDPC codes are designed to support high throughput, a variable code rate and length and hybrid automatic repeat request in addition to good error correcting capability. 5G polar codes, as a coding scheme for control, are designed to perform well with short block length while addressing a latency issue of successive cancellation decoding.


Author(s):  
XIANGBIN YU ◽  
GUANGGUO BI

Space-time block (STB) coding has been an effective transmit diversity technique for combating fading recently. In this paper, a full-rate and low-complexity STB coding scheme with complex orthogonal design for multiple antennas is proposed, and turbo code is employed as channel coding to improve the proposed code scheme performance further. Compared with full-diversity multiple antennas STB coding schemes, the proposed scheme can implement full data rate, partial diversity and a smaller complexity, and has more spatial redundancy information. Moreover, using the proposed scheme can form efficient spatial interleaving, thus performance loss due to partial diversity is effectively compensated by the concatenation of turbo coding. Simulation results show that on the condition of the same system throughput and concatenation of turbo code, the proposed scheme has lower bit error rate (BER) than those low-rate and full-diversity multiple antennas STB coding schemes.


2017 ◽  
Vol 6 (4) ◽  
pp. 116 ◽  
Author(s):  
Wessam Mostafa ◽  
Eman Mohamed ◽  
Abdelhalim Zekry

Long Term Evolution Advanced (LTE-A) is the evolution of the LTE that developed by 3rd Generation Partnership Project (3GPP).LTE-A exceeded International Telecommunication Union (ITU) requirements for 4th Generation (4G) known as International Mobile Telecommunications (IMT-Advanced). It is formally introduced in October 2009. This paper presents a study and an implementation of the LTE-A downlink physical layer based on 3GPP release 10 standards using Matlab simulink. In addition, it provides the LTE-A performance in terms of Bit Error Rate (BER) against Signal to Noise Ratio (SNR) for different modulation and channel coding schemes. Moreover, different scenarios of Carrier Aggregation (CA) are modeled and implemented. The Simulink model developed for the LTE-A transceiver can be translated into digital signal processor DSP code or VHDL on FPGA code.


2019 ◽  
Vol 9 (4) ◽  
pp. 734 ◽  
Author(s):  
Pierre-Antoine Cucis ◽  
Christian Berger-Vachon ◽  
Ruben Hermann ◽  
Fabien Millioz ◽  
Eric Truy ◽  
...  

Two schemes are mainly used for coding sounds in cochlear implants: Fixed-Channel and Channel-Picking. This study aims to determine the speech audiometry scores in noise of people using either type of sound coding scheme. Twenty normal-hearing and 45 cochlear implant subjects participated in this experiment. Both populations were tested by using dissyllabic words mixed with cocktail-party noise. A cochlear implant simulator was used to test the normal-hearing subjects. This simulator separated the sound into 20 spectral channels and the eight most energetic were selected to simulate the Channel-Picking strategy. For normal-hearing subjects, we noticed higher scores with the Fixed-Channel strategy than with the Channel-Picking strategy in the mid-range signal-to-noise ratios (0 to +6 dB). For cochlear implant users, no differences were found between the two coding schemes but we could see a slight advantage for the Fixed-Channel strategies over the Channel-Picking strategies. For both populations, a difference was observed for the signal-to-noise ratios at 50% of the maximum recognition plateau in favour of the Fixed-Channel strategy. To conclude, in the most common signal-to-noise ratio conditions, a Fixed-Channel coding strategy may lead to better recognition percentages than a Channel-Picking strategy. Further studies are indicated to confirm this.


2015 ◽  
Vol 63 (11) ◽  
pp. 3991-4001 ◽  
Author(s):  
Yi Lu ◽  
Matthew D. Higgins ◽  
Mark S. Leeson

Sign in / Sign up

Export Citation Format

Share Document