scholarly journals Software implementation of LTE-advanced using Matlab Simulink

2017 ◽  
Vol 6 (4) ◽  
pp. 116 ◽  
Author(s):  
Wessam Mostafa ◽  
Eman Mohamed ◽  
Abdelhalim Zekry

Long Term Evolution Advanced (LTE-A) is the evolution of the LTE that developed by 3rd Generation Partnership Project (3GPP).LTE-A exceeded International Telecommunication Union (ITU) requirements for 4th Generation (4G) known as International Mobile Telecommunications (IMT-Advanced). It is formally introduced in October 2009. This paper presents a study and an implementation of the LTE-A downlink physical layer based on 3GPP release 10 standards using Matlab simulink. In addition, it provides the LTE-A performance in terms of Bit Error Rate (BER) against Signal to Noise Ratio (SNR) for different modulation and channel coding schemes. Moreover, different scenarios of Carrier Aggregation (CA) are modeled and implemented. The Simulink model developed for the LTE-A transceiver can be translated into digital signal processor DSP code or VHDL on FPGA code.

2019 ◽  
Vol 9 (4) ◽  
pp. 734 ◽  
Author(s):  
Pierre-Antoine Cucis ◽  
Christian Berger-Vachon ◽  
Ruben Hermann ◽  
Fabien Millioz ◽  
Eric Truy ◽  
...  

Two schemes are mainly used for coding sounds in cochlear implants: Fixed-Channel and Channel-Picking. This study aims to determine the speech audiometry scores in noise of people using either type of sound coding scheme. Twenty normal-hearing and 45 cochlear implant subjects participated in this experiment. Both populations were tested by using dissyllabic words mixed with cocktail-party noise. A cochlear implant simulator was used to test the normal-hearing subjects. This simulator separated the sound into 20 spectral channels and the eight most energetic were selected to simulate the Channel-Picking strategy. For normal-hearing subjects, we noticed higher scores with the Fixed-Channel strategy than with the Channel-Picking strategy in the mid-range signal-to-noise ratios (0 to +6 dB). For cochlear implant users, no differences were found between the two coding schemes but we could see a slight advantage for the Fixed-Channel strategies over the Channel-Picking strategies. For both populations, a difference was observed for the signal-to-noise ratios at 50% of the maximum recognition plateau in favour of the Fixed-Channel strategy. To conclude, in the most common signal-to-noise ratio conditions, a Fixed-Channel coding strategy may lead to better recognition percentages than a Channel-Picking strategy. Further studies are indicated to confirm this.


2011 ◽  
Vol 9 ◽  
pp. 391-396
Author(s):  
J. Philipp

Abstract. A detailed analysis of the measurement procedures recommended by the International Telecommunication Union (ITU) shows that – with proper definition of audio quality – the FM broadcasting system can provide an audio signal-to-noise ratio of no better than 40 dB, when the interference in the neighboring channels exhausts the limits established by the internationally agreed protection ratios. Thus any attempt to relax the protection, be it motivated by the desire to implement additional FM or new digital services in the FM band, would inevitably degrade reception quality of existing services to levels hardly acceptable by broadcast listeners.


Author(s):  
A. E. Abdelkareem ◽  
Saad Mohammed Saleh ◽  
Ammar D. Jasim

<p>In this paper, developing high performance software for demanding real-time embedded systems is proposed. This software-based design will enable the software engineers and system architects in emerging technology areas like 5G Wireless and Software Defined Networking (SDN) to build their algorithms. An ADSP-21364 floating point SHARC Digital Signal Processor (DSP) running at 333 MHz is adopted as a platform for an embedded system. To evaluate the proposed embedded system, an implementation of frame, symbol and carrier phase synchronization is presented as an application. Its performance is investigated with an on line Quadrature Phase Shift keying (QPSK) receiver. Obtained results show that the designed software is implemented successfully based on the SHARC DSP which can utilized efficiently for such algorithms. In addition, it is proven that the proposed embedded system is pragmatic and capable of dealing with the memory constraints and critical time issue due to a long length interleaved coded data utilized for channel coding.</p>


2013 ◽  
Vol 7 (3) ◽  
pp. 626-637
Author(s):  
Huthaifa Al-Jaradat ◽  
Kumbesan Sandrasegaran

Long Term Evolution-Advanced (LTE-Advanced) has been recently submitted by the 3rd Generation Partnership Project (3GPP) to the International Telecommunication Union (ITU) as one of the candidates 4G technologies. LTE-Advanced is expected to outperform its predecessor (i.e. LTE) by providing data rate up to 1Gbps and 500 Mbps in the downlink and uplink directions, respectively, also by supporting higher speed mobility (i.e. 500 km/h). In order to allow such advances in the performance, Radio Resource Management (RRM) must be effectively utilized. This paper studies the technical challenges associated with some of the RRM tasks (including Packet scheduling, interference management and handover control), in addition it presents from the open literature some of the proposed solutions to these technical challenges.


2014 ◽  
Vol 214 ◽  
pp. 121-129 ◽  
Author(s):  
Andrzej Waindok

The mathematical and physical models of the permanent magnet tubular linear actuator (PMTLA) including control and supply system are presented in the paper. In the numerical analysis a field-circuit model is used. The field model is calculated using the finite element method (FEM), while the circuit model is implemented in Matlab/Simulink software. Both models are coupled using the look-up tables in Matlab software. To verify the calculations, the real drive system has been build. It consists of supply and control system, PC and sensors. The supply system is connected to the controller, which uses the Texas Instruments digital signal processor (DSP) TMS320F2812. The processor is linked with the PC, where the control algorithm as well as the graphical user interface (GUI) have been developed in the Matlab/Simulink package using the extended toolboxes. Data transfer is realized using the LPT port supported by the Real Time Workshop. With using this system, the calculation results obtained from the numerical model have been compared with the measured ones. A good conformity was obtained.


2013 ◽  
Vol 411-414 ◽  
pp. 898-902
Author(s):  
Peng Zhou ◽  
Qi An ◽  
Wei Xia ◽  
Zi Shu He

In order to recognize the modulation type of common communication signals, an automatic recognition algorithm based on decision theory is designed and introduced. Combined with engineering realization, an adjustment is made to the algorithm. Then, a recognition scheme is proposed and realized on Digital Signal Processor (DSP), which is the key module in monitoring receiver. When the signal-to-noise ratio is not less than 12 dB, the experimental results show that the right recognition rates of eight common communication signals are above 90%. The algorithm proposed can result in a good case, and the smaller calculated complexity compared with its counterparts makes it could better reach the real-time requirement of engineering realization.


Author(s):  
Srikanth Perungulam ◽  
Scott Wills ◽  
Greg Mekras

Abstract This paper illustrates a yield enhancement effort on a Digital Signal Processor (DSP) where random columns in the Static Random Access Memory (SRAM) were found to be failing. In this SRAM circuit, sense amps are designed with a two-stage separation and latch sequence. In the failing devices the bit line and bit_bar line were not separated far enough in voltage before latching got triggered. The design team determined that the sense amp was being turned on too quickly. The final conclusion was that a marginal sense amp design, combined with process deviations, would result in this type of failure. The possible process issues were narrowed to variations of via resistances on the bit and bit_bar lines. Scanning Electron Microscope (SEM) inspection of the the Focused Ion Beam (FIB) cross sections followed by Transmission Electron Microscopy (TEM) showed the presence of contaminants at the bottom of the vias causing resistance variations.


2021 ◽  
Vol 11 (3) ◽  
pp. 1211
Author(s):  
En-Chih Chang ◽  
Chun-An Cheng ◽  
Rong-Ching Wu

This paper develops a full-bridge DC-AC converter, which uses a robust optimal tracking control strategy to procure a high-quality sine output waveshape even in the presence of unpredictable intermissions. The proposed strategy brings out the advantages of non-singular fast convergent terminal attractor (NFCTA) and chaos particle swarm optimization (CPSO). Compared with a typical TA, the NFCTA affords fast convergence within a limited time to the steady-state situation, and keeps away from the possibility of singularity through its sliding surface design. It is worth noting that once the NFCTA-controlled DC-AC converter encounters drastic changes in internal parameters or the influence of external non-linear loads, the trembling with low-control precision will occur and the aggravation of transient and steady-state performance yields. Although the traditional PSO algorithm has the characteristics of simple implementation and fast convergence, the search process lacks diversity and converges prematurely. So, it is impossible to deviate from the local extreme value, resulting in poor solution quality or search stagnation. Thereby, an improved version of traditional PSO called CPSO is used to discover global optimal NFCTA parameters, which can preclude precocious convergence to local solutions, mitigating the tremor as well as enhancing DC-AC converter performance. By using the proposed stable closed-loop full-bridge DC-AC converter with a hybrid strategy integrating NFCTA and CPSO, low total harmonic distortion (THD) output-voltage and fast dynamic load response are generated under nonlinear rectifier-type load situations and during sudden load changes, respectively. Simulation results are done by the Matlab/Simulink environment, and experimental results of a digital signal processor (DSP) controlled full-bridge DC-AC converter prototype confirm the usefulness of the proposed strategy.


2021 ◽  
Vol 51 (3) ◽  
pp. 9-16
Author(s):  
José Suárez-Varela ◽  
Miquel Ferriol-Galmés ◽  
Albert López ◽  
Paul Almasan ◽  
Guillermo Bernárdez ◽  
...  

During the last decade, Machine Learning (ML) has increasingly become a hot topic in the field of Computer Networks and is expected to be gradually adopted for a plethora of control, monitoring and management tasks in real-world deployments. This poses the need to count on new generations of students, researchers and practitioners with a solid background in ML applied to networks. During 2020, the International Telecommunication Union (ITU) has organized the "ITU AI/ML in 5G challenge", an open global competition that has introduced to a broad audience some of the current main challenges in ML for networks. This large-scale initiative has gathered 23 different challenges proposed by network operators, equipment manufacturers and academia, and has attracted a total of 1300+ participants from 60+ countries. This paper narrates our experience organizing one of the proposed challenges: the "Graph Neural Networking Challenge 2020". We describe the problem presented to participants, the tools and resources provided, some organization aspects and participation statistics, an outline of the top-3 awarded solutions, and a summary with some lessons learned during all this journey. As a result, this challenge leaves a curated set of educational resources openly available to anyone interested in the topic.


Sign in / Sign up

Export Citation Format

Share Document