scholarly journals A novel triple-tied-cross-linked PV array configuration with reduced number of cross-ties to extract maximum power under partial shading conditions

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2344
Author(s):  
Ghoname Abdullah ◽  
Hidekazu Nishimura ◽  
Toshio Fujita

This paper presents an experimental investigation on photovoltaic array (PV array) power output affected by partial shading conditions (PSCs). An experiment setup of a PV array with a series configuration using 2 × 4 photovoltaic modules (PV modules) was built. The power output loss due to the shading effect on the first photovoltaic cells (PV cell) connected with bypass diodes of each photovoltaic module, installed in the PV array in the horizontal direction, was evaluated. Depending on the direction of the sun relative to the PV array configuration, the shading percentage was measured during the test and recorded the current and voltage of the PV array. The performance evaluation of the PV array configurations is referred to with respect to the values of maximum power voltage, the maximum power current, maximum power output, power output losses and fill factor (FF). The experimental results show that 44% shading of the first PV cells affects PV array power output loss by more than 80%.


2019 ◽  
Author(s):  
LAHCEN

The main purpose of this paper is to model, simulate, and improve the performance of different 9 × 9 PV array configurations under different Partial Shading Conditions (PSCs) in order to extract the maximum power by defeat the mismatching power losses. Hence, PSCs reduces the performance of Photovoltaic (PV) arrays and increase the Local Maximum Power Points (LMPPs) on output characteristics P-V due to mismatching power losses between the PV panels. For this, Total-CrossTied (TCT) , and proposed Magic Square View (MSV) PV array topologies are considered for the study under Short Narrow shading patterns. PV array configurations enhancements and theirinvestigations are carried out with regard to the comparison of the Global peak of outlet power (GP).The parameters of the PV array configurations are performed in MATLAB/Simulink software.


2021 ◽  
pp. 1-33
Author(s):  
Shahroz Anjum ◽  
Vivekananda Mukherjee ◽  
Gitanjali Mehta

Abstract Individual performance of photovoltaic (PV) modules is contravened by mismatch losses which results in blockage in most of the solar power generated by the PV array (PVA). Partial shading conditions (PSCs) are the main causes of these losses. Several techniques have been discussed to reduce the issues caused by PSCs. Reconfiguration techniques have been proven to be one of the most successful methods that help towards this cause. In this method, the location of PV module (PVM) in the PVA is reconfigured so that the shading effects get distributed throughout the entire array and, hence, maximizing the power output. Two novel reconfiguration patterns such as canonical SuDoKu (CS) and multi diagonal SuDoKu (MDS) for total cross tied (TCT) configuration have been put forth in this manuscript. This approach aims to rearrange the PVMs in the TCT array as per the fed in patterns without causing a change in the internal electrical connections. Further parts of the manuscript focus on the comparison of the proposed pattern's performance with other pre-existing PVA arrangements such as, TCT, SuDoKu, optimal SuDoKu (OS) and modified SuDoku (MS) by taking into account the effects of global maximum power (GMP) point, mismatch power loss, fill factor and performance ratio. The results obtained from the detailed analysis presented in this paper gives proper evidence that, in many cases, the GMP is amplified in the CS and, in all cases, GMP is amplified in the proposed MDS PVA under different shading conditions.


Author(s):  
Lunde Ardhenta ◽  
Wijono Wijono

Wind energy and solar energy are the prime energy sources which are being utilized for renewal energy. The performance of a photovoltaic (PV) array for solar energy is affected by temperature, irradiation, shading, and array configuration. Often, the PV arrays are shadowed, completely or partially, by the passing clouds, neighboring buildings and towers, trees, and utility and telephone poles. Under partially shaded conditions, the PV characteristics are more complex with multiple peaks, hence, it is very important to understand and predict the MPP under PSC in order to extract the maximum possible power. This paper presents the development of PV array simulator for studying the I–V and P–V characteristics of a PV array under a partial shading condition. It can also be used for developing and evaluating new maximum power point tracking techniques, for PV array with partially shaded conditions. It is observed that, for a given number of PV modules, the array configuration significantly affects the maximum available power under partially shaded conditions. This is another aspect to which the developed tool can be applied. The model has been experimentally validated and the usefulness of this research is highlighted with the help of several illustrations


2012 ◽  
Vol 512-515 ◽  
pp. 97-100
Author(s):  
Guo Zhao ◽  
Xue Liang Huang ◽  
Yong Zhao

Based on tow-diode model of PV cells, the simulation model of PV array is established. This simulation model can simulate the output characteristics of PV array according to different shading conditions. The output power-voltage curve of PV array may have multiple local Maximum Power Points (MPPs) due to the partial shading. As a result, traditional maximum power point tracking (MPPT) algorithms can easily fail to track global MPP, this can be one of main causes for reduced energy. In order to overcome this drawback, an improved global scanning MPPT algorithm is proposed. Moreover, Matlab-based model is established. It is verified by simulation results carried out that this improved MPPT algorithm is effective to track the global MPP.


Sign in / Sign up

Export Citation Format

Share Document