scholarly journals STEADY-STATE HEAT REJECTION RATES FOR A COAXIAL BOREHOLE HEAT EXCHANGER DURING PASSIVE AND ACTIVE COOLING DETERMINED WITH THE NOVEL STEP THERMAL RESPONSE TEST METHOD

2018 ◽  
Vol 33 (2) ◽  
pp. 61-71 ◽  
Author(s):  
Tomislav Kurevija ◽  
◽  
Marija Macenić ◽  
Kristina Strpić ◽  
◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4067 ◽  
Author(s):  
Xuedan Zhang ◽  
Tiantian Zhang ◽  
Bingxi Li ◽  
Yiqiang Jiang

The impact of different parameter estimation results on the design length of a borehole heat exchanger has received very little attention. This paper provides an in-depth investigation of this problem, together with a full presentation of six data interpretation models and a comprehensive comparison of four representative sizing methods and their inter models. Six heat transfer models were employed to interpret the same thermal response test data set. It was found that the estimated parameters varied with the data interpretation model. The relative difference in borehole thermal resistance reached 34.4%, and this value was 11.9% for soil thermal conductivity. The resulting parameter estimation results were used to simulate mean fluid temperature for a single borehole and then to determine the borehole length for a large bore field. The variations in these two correlated parameters caused about 15% and 5% relative difference in mean fluid temperature in the beginning and at the end of the simulation period, respectively. For computing the borehole design length, software-based methods were more sensitive to the influence of parameter estimation results than simple equation-based methods. It is expected that these comparisons will be beneficial to anyone involved in the design of ground-coupled heat pump systems.


Author(s):  
Tomislav Kurevija ◽  
Adib Kalantar ◽  
Marija Macenić ◽  
Josipa Hranić

When considering implementation of shallow geothermal energy as a renewable source for heating and cooling of the building, special care should be taken in hydraulic design of borehole heat exchanger system. Laminar flow can occur in pipes due to usage of glycol mixture at low temperature or inadequate flow rate. This can lead to lower heat extraction and rejection rates of the exchanger because of higher thermal resistances. Furthermore, by increasing flow rate to achieve turbulent flow and satisfactory heat transfer rate can lead to increase the pressure drop of the system and oversizing of circulation pump which leads to impairment of seasonal coefficient of performance at the heat pump. Most frequently used borehole heat exchanger system in Europe is double-loop pipe system with smooth inner wall. Lately, development is focused on implementation of different configuration as well as with ribbed inner wall which ensures turbulent flow in the system, even at lower flow rates. At a location in Zagreb, classical and extended thermal response test was conducted on three different heat exchanger configurations in the same geological environment. With classic TRT test, thermogeological properties of the ground and thermal resistance of the borehole were determined for each smooth or turbulator pipe configuration. Extended Steady-State Thermal Response Step Test (TRST) was implemented, which incorporate series of power steps to determine borehole extraction rate at the define steady-state heat transfer conditions of 0/-3°C. Results show that heat exchangers with ribbed inner pipe wall have advantages over classic double-loop smooth pipe design, in terms of greater steady state heat extraction rate and more favorable hydraulic conditions.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1504 ◽  
Author(s):  
Kurevija ◽  
Kalantar ◽  
Macenić ◽  
Hranić

When considering implementation of shallow geothermal energy as a renewable source for heating and cooling of buildings, special care should be taken in the hydraulic design of the borehole heat exchanger system. Laminar flow can occur in pipes due to the usage of glycol mixtures at low temperature or inadequate flow rates. This can lead to lower heat extraction and rejection rates of the exchanger because of higher thermal resistance. Furthermore, by increasing the flow rate to achieve turbulent flow and satisfactory heat transfer rate can lead to an increase in the pressure drop of the system and oversizing of the circulation pump which leads to impairment of the seasonal coefficient of performance at the heat pump. The most frequently used borehole heat exchanger system in Europe is a double-loop pipe system with a smooth inner wall. Lately, development is focused on the implementation of a different configuration as well as with ribbed inner walls which ensures turbulent flow in the system, even at lower flow rates. At a location in Zagreb, standard and extended thermal response tests were conducted on three different heat exchanger configurations in the same geological environment. With a standard TRT test, thermogeological properties of the ground and thermal resistance of the borehole were determined for each smooth or turbulator pipe configuration. On the other hand, extended Steady-State Thermal Response Step Test (TRST) incorporates a series of power steps to determine borehole extraction rates at the defined steady-state heat transfer conditions of 0/–3 °C. When comparing most common exchanger, 2U-loop D32 smooth pipe, with novel 1U-loop D45 ribbed pipe, an increase in heat extraction of 6.5% can be observed. Also, when the same comparison is made with novel 2U-loop D32 ribbed pipe, an increase of 18.7% is achieved. Overall results show that heat exchangers with ribbed inner pipe wall have advantages over classic double-loop smooth pipe designs, in terms of greater steady-state heat extraction rate and more favorable hydraulic conditions.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3737
Author(s):  
Aneta Sapińska-Śliwa ◽  
Tomasz Sliwa ◽  
Kazimierz Twardowski ◽  
Krzysztof Szymski ◽  
Andrzej Gonet ◽  
...  

This work concerns borehole heat exchangers and their testing using apparatus for thermal response tests. In the theoretical part of the article, an equation was derived from the known equation of heat flow, on which the interpretation of the thermal response test was based. The practical part presents the results of several measurements taken in the AGH Laboratory of Geoenergetics. They were aimed at examining the potential heat exchange capacity between the heat carrier and rock mass. Measurement results in the form of graphs are shown in relation to the examined, briefly described wells. Result analysis made it possible to draw conclusions regarding the interpretation of the thermal response test. The method of averaging the measurement results was subjected to further study. The measuring apparatus recorded data at a frequency of one second, however such accuracy was too large to be analyzed efficiently. Therefore, an average of every 1 min, every 10 min, and every 60 min was proposed. The conclusions stemming from the differences in the values of effective thermal conductivity in the borehole heat exchanger, resulting from different data averaging, were described. In the case of three borehole heat exchangers, ground properties were identical. The effective thermal conductivity λeff was shown to depend on various borehole heat exchanger (BHE) designs, heat carrier flow geometry, and grout parameters. It is important to consider the position of the pipes relative to each other. As shown in the charts, the best (the highest) effective thermal conductivity λeff occurred in BHE-1 with a coaxial construction. At the same time, this value was closest to the theoretical value of thermal conductivity of rocks λ, determined on the basis of literature. The standard deviation and the coefficient of variation confirmed that the effective thermal conductivity λeff, calculated for different time intervals, showed little variation in value. The values of effective thermal conductivity λeff for each time interval for the same borehole exchanger were similar in value. The lowest values of effective thermal conductivity λeff most often appeared for analysis with averaging every 60 min, and the highest—for analysis with averaging every 1 min. For safety reasons, when designing (number of BHEs), safer values should be taken for analysis, i.e., lower, averaging every 60 min.


Sign in / Sign up

Export Citation Format

Share Document