scholarly journals GPS on the example of an auto-generating 3D model with free tolerance

Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 1044-1045
Author(s):  
Paweł Wieroński

GPS, i.e. geometric product specification, is a graphical system consisting of symbols, rules, and definitions that describe the requirements for dimensions, shapes, profiles, directions, and positioning and milling of a finished product in a three- -dimensional space. The paper focuses on the group of tolerances within the product shape, taking into account the so-called free tolerance. For the purposes of this work, a 3D model of the cylinder described using the functional dependencies, has been created, which is used to illustrate the concept of GPS in three-dimensional space. The CATIA engineering environment has been applied for this purpose and a suitable numerical parameters have been assigned to each of the dimensions and tolerances. The use of a self-generating 3D model makes it easier to illustrate the GPS concept by graphically displaying the resulting tolerance field. The autogenerating model has been used to verify the correctness of the piston gauge.

Author(s):  
D. Kontos ◽  
A. Georgopoulos

Abstract. In the context of this paper, a virtual reality application that allows each user to perform basic topographic processes on an already created 3D model inside a virtual environment was developed. Specifically, it is an application that allows the user to perform measurements of distances between two points in three-dimensional space and measurement and extraction of the three-dimensional coordinates of any point inside the virtual reality environment. Furthermore, the created application was evaluated in terms of its functionality, its usability and metric accuracy. Before the developing stage a research was done in order to determine which virtual reality system and which game engine is most suitable to use and finally the HTC Vive® virtual reality system and the Unreal Engine 4 game engine were used. Before all that, the concept of the virtual reality science was defined and also the virtual reality technologies in today's world were analyzed.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


i-com ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 67-85
Author(s):  
Matthias Weise ◽  
Raphael Zender ◽  
Ulrike Lucke

AbstractThe selection and manipulation of objects in Virtual Reality face application developers with a substantial challenge as they need to ensure a seamless interaction in three-dimensional space. Assessing the advantages and disadvantages of selection and manipulation techniques in specific scenarios and regarding usability and user experience is a mandatory task to find suitable forms of interaction. In this article, we take a look at the most common issues arising in the interaction with objects in VR. We present a taxonomy allowing the classification of techniques regarding multiple dimensions. The issues are then associated with these dimensions. Furthermore, we analyze the results of a study comparing multiple selection techniques and present a tool allowing developers of VR applications to search for appropriate selection and manipulation techniques and to get scenario dependent suggestions based on the data of the executed study.


2021 ◽  
Vol 1111 (1) ◽  
pp. 012034
Author(s):  
N A Maksimov ◽  
K Zhigalov ◽  
A V Gorban ◽  
I V Ignatev

Sign in / Sign up

Export Citation Format

Share Document