scholarly journals The influence of changing the parameters of water-abrasive cutting on the quality of cutting composite cross-section structures

Mechanik ◽  
2018 ◽  
Vol 91 (7) ◽  
pp. 476-478
Author(s):  
Elżbieta Doluk ◽  
Józef Kuczmaszewski ◽  
Paweł Pieśko

Presented are results of the surface quality sandwich composites (aluminum alloy EN AW-2024 and CFRP) by using an abrasive water-jet. The experiments were conducted with different speed of cutting, pressure of the abrasive water, mass flow rates, entry side of the stream and quantity of composite layers. The analysis has been studied based on received bevel angle values.


2019 ◽  
Vol 950 ◽  
pp. 32-37 ◽  
Author(s):  
Qi Wen Xu ◽  
Chi Heng Qiang ◽  
Chu Wen Guo

Through the experiment of cutting 1060 Aluminum Alloy by Abrasive Water Jet (AWJ), the surface roughness of material which is cut by AWJ is controlled by the cutting work pressure, cutting stand-off distance, cutting traverse speed and the abrasive diameter which used in AWJ. Measuring the cutting surface roughness of 1060 Aluminum Alloy by stereomicroscope and surfagauge, among the factor which can affect the surface roughness, the cutting traverse speed play a dominant role to control the surface roughness in the process of cutting. As the result of the surface roughness of 1060 Aluminum Alloy at different cutting depth is different, which can be separated in two different zones (Smooth area and Rough zone). As the result of experiment, the abrasive diameter has little effect to change the surface roughness between two different zones. The surface quality of rough zone can be improved when change the diameter of abrasive: with the diameter of abrasive increase, the surface quality of rough zone become better. A higher cutting pressure can improve the surface quality of the cutting surface of 1060 Aluminum Alloy. While increase the cutting traverse speed in the process of cutting can decrease the surface quality of 1060 Aluminum Alloy cutting surface. In a certain range, increase the cutting stand-off distance of AWJ can decrease the surface roughness of the cutting surface, and the roughness of cutting surface will change little when the stand-off distance increases to a certain extent.







2016 ◽  
Vol 106 (01-02) ◽  
pp. 39-43
Author(s):  
Y. Babenko ◽  
T. Mayer ◽  
A. Gebhardt

Dieser Fachartikel befasst sich mit der Untersuchung des Potentials der Ultraschallüberlagerung beim Trennschleifen moderner Faserverbundwerkstoffe. Es wurde eine Zerspankraftanalyse des Trennschleifprozesses am CFK-Werkstück mit variierenden Prozessparametern durchgeführt. Zudem wurden die Oberflächenqualitäten der Schnittkanten betrachtet.   The presented study describes the investigation of the potential of ultrasound abrasive cutting of modern fiber composites. A force analysis of the abrasive cutting process of CFRP was conducted, while the process parameters were varied. In addition, the surface quality of the machined workpieces was observed.



2002 ◽  
Vol 52 (7) ◽  
pp. 303-307 ◽  
Author(s):  
Hitoshi YAE ◽  
Ryosuke KIMURA ◽  
Makoto YOSIDA ◽  
Gen SASAKI ◽  
Jin PAN ◽  
...  


2019 ◽  
Vol 889 ◽  
pp. 155-160
Author(s):  
Trong Mai Nguyen ◽  
Đuc Quy Tran ◽  
Van Nghe Pham ◽  
Van Canh Nguyen

In this research work, the result of the effects of technological parameters on surface roughness in extrusion bars of aluminum alloy were pesented. The results of this study may be used for choosing optimal parameters of extrusion process so that surface quality of extruded bar was improved.







2014 ◽  
Author(s):  
Khashayar Teimoori ◽  
Ali M. Sadegh

Packing in cooling towers is commonly used in nuclear power plants and air conditioning systems. However their efficiency with respect to the inlet air flow rate and the temperature of the water has not been fully investigated. In this research, the efficiency of packing rotational speed with respect to the wet counter flow of a cooling tower is experimentally investigated. In our experimental studies, six elliptical wooden plates that are equally spaced are used as a packing tower. The packing area of 0.85 m2 is considered with the following rotor speed ranges: 0.5, 3.5, 10, 15 and 17 rpm. It is assumed that the water mass flow rate is proportional to the inlet air to the tower. Six mass flow rates starting from 0.2 to 2.8 kg/h and the inlet air and water temperatures of 27°C and 45°C, respectively, are considered. The results illustrate that for the range of 0 to 5 rpm of the packing rotational speed the cooling rate of water is increased 3% for the water flow rate of 2.8 kg/h, and 24% for the water flow rate of 0.4 kg/h. Additionally, as a result of the increased rotational speed from 5 to over 17 rpm the cooling rate at both maximum and minimum water mass flow rates are increased from 13.9 to 34.4 percent, respectively. Furthermore, the water outlet temperature is reduced from 8.6°C to 3.3°C in the least and the most mass flow rates leading to the increased speed from 5 to 17 rpm, respectively. The experimental relationship between the inlet air temperature and the rotational speed of the packing has been determined. Also, the inlet water temperature at the maximum flow rate has been decreased to 3.4 and at the least water mass flow rate it has been decreased to 29 percent for the range of rotational speed from 5 to over 17 rpm of the packing rotation. All the results are depicted in several curves to show the actual variations of the variables.



Sign in / Sign up

Export Citation Format

Share Document