scholarly journals CORRECTION OF ACID BASE DISORDERS IN RATS WITH ACUTE ETHYLENGLYCOL POISONING

2020 ◽  
Author(s):  
Konstantin Vladimirovich Sivak ◽  
Mikhail Mikhailovich Lyubishin ◽  
Elena Yur’evna Kalinina

T The aim of the article. The aim of this study was to evaluation of the effectiveness of standard antidote therapy and dimephosphon administration in rats with acute ethylene glycol poisoning. The tasks of the study included modeling acute ethylene glycol poisoning in rats, conducting experimental therapy with ethanol antidote in combination with sodium bicarbonate and dimephosphon therapy, comparing the effectiveness of drugs in relation to indicators of acid-base state impairment and renal function. Materials and methods. Ethylene glycol (EG) was administered per os to Wistar male rats (190-210 g b.w.) at a single dose of 6 mL / kg b.w. through an atraumatic gastric tube. The animals were divided into 4 groups of 6 individuals each: intact (negative control), EG poisoning (positive control), EG + standard antidote therapy, EG + dimephosphon therapy. Experimental therapy was carried out for first 24 hours using standard antidote therapy: ethanol (30% solution 2 mL / kg b.w. i.p. after 1, 4, 6, 12, 18 hours) and sodium bicarbonate (4% solution 6 mL / kg b.w. i.p. 3 times on the first day), as well as administration of dimephosphon (150 mg / kg i.p. 3 times on the first day, 450 mg / kg b.w. per day). Daily urine on day 3 after poisoning was collected in metabolic cages. Creatinine concentration in urine and blood serum samples were measured, and creatinine clearance was calculated. After 24 hours of therapy, the pH, level of sodium, potassium, calcium, magnesium, chlorides, bicarbonates, lactate, d-3-hydroxybutyrate, albumin, urea and creatinine (measured parameters) were determined in venous blood samples. Anion gap, ∆рН, ∆AG, ∆HCO3, ∆AG/∆HCO3 and ∆Gap were calculated. The mechanism of death was determined for the dead animals. Data processing was performed using GraphPad Prism 6.0. Results. Acute poisoning of rats with ethylene glycol leads to the development of toxic encephalopathy and nephropathy, acid-base abnormalities, high anion gap metabolic acidosis due to the presence of metabolites, as well as lactate-ketoacidosis due to depression of the central nervous system and hunger. 100% of the EG-treated (12 mL / kg b.w.) animals died within 3 days. Metabolic acidosis in combination with hypermagnesemia had provided a cardiodepressive effect, which with direct nephrotoxic and neurotoxic effects contributed to the development of a mixed variant of thanatogenesis and death. Death comes from toxic encephalopathy and nephropathy, high anion gap metabolic acidosis caused by direct nephrotoxic and neurotoxic effects of EG and its metabolites. The standard antidote therapy with ethanol in combination with sodium bicarbonate prevented a pH shift, lactic acidosis and ketoacidosis, an increase in urea, but did not affect the level of bicarbonate (p=0.048), creatinine and its clearance (p=0.037) and the anion gap (p=0.033). The dimephosphon therapy prevented a decrease in creatinine clearance and blood bicarbonate level, limited the increase in lactate dehydrogenase activity, had a more pronounced effect on the AG and ∆AG (p=0.042), but did not affect the hypocalcemia (p=0.0076) and hypoalbuminemia (p=0.021). Conclusion. Acute ethylene glycol poisoning leads to the development of a mixed variant of thanatogenesis with damage to the central nervous and urinary systems, as well as the heart. Autopsy and histopathology confirmed the cause of animal death. In the model at a dose of 6 mL / kg of EG the dimephosphon therapy was more conducive to the correction of the main markers of high anion gap metabolic acidosis (HAGMA) than standard antidote therapy (both measured and calculated, p0.05). The dimephosphon therapy prevented a decrease in creatinine clearance. A comparative analysis of two methods for the correction of high anion gap metabolic acidosis in rats in acute poisoning with ethylene glycol showed that dimephosphon therapy vs. standard antidote therapy had a stronger effect on markers of metabolic acidosis and renal impairment.

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Kentaro Ukita ◽  
Kanako Otomune ◽  
Ryo Fujimoto ◽  
Kanako Hasegawa ◽  
Koichi Izumikawa ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Yun Qing Koh ◽  
Kian Ming Jeremy Hoe ◽  
Timothy Peng Lim Quek

Abstract Introduction: Trimethoprim-sulfamethoxazole (TMP-SMX) is a commonly used antibiotic. We present a case of severe hyponatremia and Type 4 renal tubular acidosis (functional hypoaldosteronism) in a patient treated with TMP-SMX. Clinical Case: A 62 year old gentleman with hypertension, dyslipidemia and a surgically repaired abdominal aortic aneurysm developed an aortic graft infection. He was admitted to hospital for acute right lower limb ischemia with embolic phenomena, and underwent surgical graft explantation. He required multiple courses of antibiotics post operatively. He was initially referred to Endocrinology for severe hyponatremia, deemed likely to be from a salt losing nephropathy secondary to polymyxin. Thyroid function and morning cortisol levels were normal. He was managed with intravenous hypertonic saline and oral salt tablets. The hyponatraemia resolved a week after polymyxin was stopped. Intravenous TMP-SMX was commenced the next day at 240 mg BD. A week later, the hyponatremia recurred, with concomitant hyperkalemia and a normal anion gap metabolic acidosis. The serum sodium was 126 mmol/L (reference interval (RI) 135-145) and the serum osmolality 275 mmol/kg (RI 275- 305). Urine studies showed a high urinary sodium (154 mmol/L) and osmolality (481 mmol/kg), consistent with renal salt wasting. The serum potassium rose to a peak of 6.1 mmol/L (RI 3.5 - 5.0), with a normal anion gap metabolic acidosis (bicarbonate 17 mmol/L (RI 21 – 31)). A paired urine pH of 8 pointed to an inability to acidify the urine. Given the clinical course and laboratory investigations, the diagnosis of TMP-associated hyponatremia and Type 4 RTA was made. Oral resonium was started to correct hyperkalemia, with a combination of oral sodium chloride and sodium bicarbonate used to treat the hyponatremia and metabolic acidosis. Fludrocortisone was not used given the concerns of causing hypertension in a patient with a diseased aortic graft. The dose of TMP-SMX was gradually reduced with improvement of the acid-base and electrolyte abnormalities, lending weight to our diagnosis. After the dose of the TMP-SMX was reduced to 80 mg BD, the hyperkalemia and metabolic acidosis resolved. The oral sodium chloride and sodium bicarbonate were gradually tailed off and stopped after cessation of the TMP-SMX. Clinical Lesson: Trimethoprim blocks the epithelial sodium channel (ENaC) of the principal cells in the terminal portion of the nephron, similar to potassium sparing diuretics like amiloride and triampterene. The resulting hyponatremia, hyperkalemia and metabolic acidosis can be life threatening. Therefore, monitoring of electrolytes and acid base status is important, particularly in susceptible patients or in those where a high dose of trimethoprim is required.


1997 ◽  
Vol 8 (5) ◽  
pp. 853-856
Author(s):  
R Taylor ◽  
J Bower ◽  
M M Salem

Ethylene glycol poisoning is a rare yet potentially fatal illness seen most commonly in association with ingestion by alcoholics or in suicide attempts. It is characterized by an elevated anion gap metabolic acidosis, osmolal gap, calcium oxalate crystals in the urine, and a well-defined clinical picture. Prompt treatment is crucial because effective intervention can prevent the neurologic, cardiac, pulmonary, and renal sequelae associated with ethylene glycol poisoning. Hemodialysis offers rapid clearance of ethylene glycol and its toxic metabolites. In this article, the case of a hemodialysis patient who suffered contamination of the dialysate solution with ethylene glycol, leading to altered mental status, coma, and severe anion gap metabolic acidosis, is reported. Despite prolonged dialysis and correction of the acidosis, the patient remained comatose and subsequently died.


CJEM ◽  
2010 ◽  
Vol 12 (05) ◽  
pp. 449-452 ◽  
Author(s):  
Thomas J. Green ◽  
Jan Jaap Bijlsma ◽  
David D. Sweet

ABSTRACTThe workup of the emergency patient with a raised anion gap metabolic acidosis includes assessment of the components of “MUDPILES” (methanol; uremia; diabetic ketoacidosis; paraldehyde; isoniazid, iron or inborn errors of metabolism; lactic acid; ethylene glycol; salicylates). This approach is usually sufficient for the majority of cases in the emergency department; however, there are many other etiologies not addressed in this mnemonic. Organic acids including 5-oxoproline (pyroglutamic acid) are rare but important causes of anion gap metabolic acidosis. We present the case of a patient with profound metabolic acidosis with raised anion gap, due to pyroglutamic acid in the setting of malnutrition and chronic ingestion of acetaminophen.


2005 ◽  
Vol 289 (3) ◽  
pp. F536-F543 ◽  
Author(s):  
Mike L. Green ◽  
Marguerite Hatch ◽  
Robert W. Freel

Ethylene glycol (EG) consumption is commonly employed as an experimental regimen to induce hyperoxaluria in animal models of calcium oxalate nephrolithiasis. This approach has, however, been criticized because EG overdose induces metabolic acidosis in humans. We tested the hypothesis that EG consumption (0.75% in drinking water for 4 wk) induces metabolic acidosis by comparing arterial blood gases, serum electrolytes, and urinary chemistries in five groups of Sprague-Dawley rats: normal controls (CON), those made hyperoxaluric (HYP) with EG administration, unilaterally nephrectomized controls (UNI), unilaterally nephrectomized rats fed EG (HRF), and a metabolic acidosis (MA) reference group imbibing sweetened drinking water (5% sucrose) containing 0.28 M NH4Cl. Arterial pH, plasma bicarbonate concentrations, anion gap, urinary pH, and the excretion of titratable acid, ammonium, phosphate, citrate, and calcium in HYP rats were not significantly different from CON rats, indicating that metabolic acidosis did not develop in HYP rats with two kidneys. Unilateral nephrectomy alone (UNI group) did not significantly affect arterial pH, plasma bicarbonate, anion gap, or urinary pH compared with CON rats; however, HRF rats exhibited some signs of a nascent acidosis in having an elevated anion gap, higher phosphate excretion, lower urinary pH, and an increase in titratable acid. Frank metabolic acidosis was observed in the MA rats: decreased arterial pH and plasma HCO3−concentration with lower urinary pH and citrate excretion with elevated excretion of ammonium, phosphate and, hence, titratable acid. We conclude that metabolic acidosis does not develop in conventional EG treatments but may ensue with renal insufficiency resulting from an oxalate load.


2009 ◽  
Vol 104 (1) ◽  
pp. 22-26 ◽  
Author(s):  
Sari Soghoian ◽  
Richard Sinert ◽  
Sage W. Wiener ◽  
Robert S. Hoffman

2020 ◽  
Vol 25 (3) ◽  
pp. 28-34
Author(s):  
Sergei Anatolievich Vasilyev ◽  
◽  
Oleg Anatolievich Kuznetsov ◽  
Pavel Pavlovich Gavrikov ◽  
Milena Andreevna Formozova ◽  
...  

In clinical case of toxic impact by ethylene glycol with severe development of acute kidney damage, respiratory failure and toxic encephalopathy, dynamic of clinical manifestations against the background of intensive care with a positive expected result of treatment in a patient who took a dose of ethylene glycol exceeding the lethal dose by 5 times is reflected.


2015 ◽  
Vol 64 (3) ◽  
pp. 282-284
Author(s):  
Otilia-Elena Frasinariu ◽  
◽  
Aniela Rugina ◽  
Cristina Jitareanu ◽  
Radu Russu ◽  
...  

Ethylene glycol is one of the most toxic alcohols; it may be accidentally or intentionally consumed as a substitute for ethanol or related to suicidal attempts. Ingestion of ethylene glycol causes a severe metabolic acidosis with increased anion and osmotic gap due to its toxic metabolites, leading to a clinical picture of central nervous system depression, cardiovascular and renal impairment. A 16-year-old boy was admitted with clinical and biological signs of ethylene glycol poisoning after simultaneous ingestion of antifreeze and ethanol. The patient had mild anion gap metabolic acidosis only at the debut, rapidly corrected with one dose of sodium bicarbonate; further evaluation did not reveal acidosis, even if the subsequent evolution included acute renal failure requiring hemodialysis. Due to the absence of a positive history and of a persistent metabolic acidosis, the diagnosis of ethylene glycol poisoning was delayed until it was confirmed by serum toxicological test. Conclusions: concomitant ingestion of ethanol may mask the symptoms of ethylene glycol poisoning; the absence of persistent metabolic acidosis does not rule out the diagnosis.


Sign in / Sign up

Export Citation Format

Share Document