pyroglutamic acid
Recently Published Documents


TOTAL DOCUMENTS

396
(FIVE YEARS 43)

H-INDEX

32
(FIVE YEARS 4)

Author(s):  
Sehrish Akram ◽  
Arshad Mehmood ◽  
Sajida Noureen ◽  
Maqsood Ahmed

Thermal-induced transformation of glutamic acid to pyroglutamic acid is well known. However, confusion remains over the exact temperature at which this happens. Moreover, no diffraction data are available to support the transition. In this article, we make a systematic investigation involving thermal analysis, hot-stage microscopy and single-crystal X-ray diffraction to study a one-pot thermal transition of glutamic acid to pyroglutamic acid and subsequent self-cocrystallization between the product (hydrated pyroglutamic acid) and the unreacted precursor (glutamic acid). The melt upon cooling gave a robust cocrystal, namely, glutamic acid–pyroglutamic acid–water (1/1/1), C5H7NO3·C5H9NO4·H2O, whose structure has been elucidated from single-crystal X-ray diffraction data collected at room temperature. A three-dimensional network of strong hydrogen bonds has been found. A Hirshfeld surface analysis was carried out to make a quantitative estimation of the intermolecular interactions. In order to gain insight into the strength and stability of the cocrystal, the transferability principle was utilized to make a topological analysis and to study the electron-density-derived properties. The transferred model has been found to be superior to the classical independent atom model (IAM). The experimental results have been compared with results from a multipolar refinement carried out using theoretical structure factors generated from density functional theory (DFT) calculations. Very strong classical hydrogen bonds drive the cocrystallization and lend stability to the resulting cocrystal. Important conclusions have been drawn about this transition.


2022 ◽  
Vol 10 ◽  
pp. 2050313X2110685
Author(s):  
Lee Connolly ◽  
Ed Briggs

Pyroglutamic acid is an endogenous organic acid and a metabolite in the γ-glutamyl cycle, involved in glutathione metabolism. Accumulation of pyroglutamic acid is a rare cause of high anion gap metabolic acidosis. There are multiple risk factors for pyroglutamic acid accumulation, such as chronic paracetamol use and sepsis. In this case report, we discuss how we came to this diagnosis, how it was subsequently managed and why it is an important consideration for critically ill patients with risk factors who are likely to end up in an intensive care setting. Pyroglutamic acid recognition and treatment could benefit patients in the critically ill population as pyroglutamic acid is a rare cause of high anion gap metabolic acidosis, which is likely under-recognised and easily treated. Inappropriate management of metabolic disorders can contribute to patient morbidity and mortality. Therefore, the recognition and appropriate management of pyroglutamic acidaemia could benefit patients with risk factors for its development in a critical care setting.


2021 ◽  
Vol 7 (12) ◽  
pp. 1091
Author(s):  
Micael F. M. Gonçalves ◽  
Sandra Hilário ◽  
Marta Tacão ◽  
Yves Van de Van de Peer ◽  
Artur Alves ◽  
...  

Aspergillus section Circumdati encompasses several species that express both beneficial (e.g., biochemical transformation of steroids and alkaloids, enzymes and metabolites) and harmful compounds (e.g., production of ochratoxin A (OTA)). Given their relevance, it is important to analyze the genetic and metabolic diversity of the species of this section. We sequenced the genome of Aspergillus affinis CMG 70, isolated from sea water, and compared it with the genomes of species from section Circumdati, including A. affinis’s strain type. The A. affinis genome was characterized considering secondary metabolites biosynthetic gene clusters (BGCs), carbohydrate-active enzymes (CAZymes), and transporters. To uncover the biosynthetic potential of A. affinis CMG 70, an untargeted metabolomics (LC-MS/MS) approach was used. Cultivating the fungus in the presence and absence of sea salt showed that A. affinis CMG 70 metabolite profiles are salt dependent. Analyses of the methanolic crude extract revealed the presence of both unknown and well-known Aspergillus compounds, such as ochratoxin A, anti-viral (e.g., 3,5-Di-tert-butyl-4-hydroxybenzoic acid and epigallocatechin), anti-bacterial (e.g., 3-Hydroxybenzyl alcohol, L-pyroglutamic acid, lecanoric acid), antifungal (e.g., L-pyroglutamic acid, 9,12,13-Trihydroxyoctadec-10-enoic acid, hydroxyferulic acid), and chemotherapeutic (e.g., daunomycinone, mitoxantrone) related metabolites. Comparative analysis of 17 genomes from 16 Aspergillus species revealed abundant CAZymes (568 per species), secondary metabolite BGCs (73 per species), and transporters (1359 per species). Some BGCs are highly conserved in this section (e.g., pyranonigrin E and UNII-YC2Q1O94PT (ACR toxin I)), while others are incomplete or completely lost among species (e.g., bikaverin and chaetoglobosins were found exclusively in series Sclerotiorum, while asperlactone seemed completely lost). The results of this study, including genome analysis and metabolome characterization, emphasize the molecular diversity of A. affinis CMG 70, as well as of other species in the section Circumdati.


2021 ◽  
Vol 79 (6) ◽  
pp. 567-578
Author(s):  
Alexandre Lasse ◽  
Marc Deveaux ◽  
Jean-Louis Beaudeux ◽  
Jean-Herlé Raphalen ◽  
Frédéric J Baud ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Mingzhu Wang ◽  
Jiao Chen ◽  
Xiaoying Lin ◽  
Lin Huang ◽  
Haichang Li ◽  
...  

Abstract Background Humidity was an unfavorable factor for patients with rheumatoid arthritis (RA). RA disease activity was severe in high humidity conditions. However, there is no evidence to demonstrate the effects of humidity on arthritis in the animal experiments and explore its relevant mechanism. Methods Using the DBA/1 mice, this study addressed the effects of a high humidity (80 ± 5%) on arthritis in collagen-induced arthritis (CIA) mice. Then, this study used the gas chromatography-mass spectrometer (GC-MS) to explore alterations in serum metabolome caused by the high humidity. Furthermore, xylitol and L-pyroglutamic acid, which were both significantly upregulated by the high humidity, were selected to further study their effects on arthritis in the CIA mice. Results The high humidity (80 ± 5%) could aggravate arthritis variables including increasing arthritis score and swelling, serum autoantibodies (anti-COII and anti-CCP), and proinflammatory cytokines (IL-6, IL-17A, and G-CSF). In addition, the high humidity could cause significant alterations in serum metabolome in the CIA mice. Xylitol and L-pyroglutamic acid were the representative serum metabolites that were significantly upregulated by the high humidity. Further experiments demonstrated that the supplementation of 0.4 mg/mL xylitol in drinking water after inducing the CIA model and 2.0 mg/mL in drinking water before inducing the CIA model could both aggravate arthritis in the CIA mice. Conclusions These data demonstrated that high humidity was not beneficial for arthritis development and its mechanism might be associated with xylitol and L-pyroglutamic acid.


Author(s):  
Mingxia Sun ◽  
Lijuan Han ◽  
Aijuan Li ◽  
Xunzhen Zhu ◽  
Wenjun Wu ◽  
...  

2021 ◽  
Author(s):  
Angelika Czajkowska ◽  
Defne Ilayda Dayi ◽  
Helga Weinschrott ◽  
Hans-Peter Deigner ◽  
Magnus S. Schmidt

AbstractIn this paper, we examined the competence of amino acids as standards for instrumental biochemical analysis. The chosen amino acids were first dissolved in various aquatic solutions and then measured in a benchtop NMR spectrometer, which is not a common choice in such analytical investigations. Analysis by mass spectrometry was used in addition. As part of these investigations, we examined and determined the stability of the amino acids ornithine, glutamic acid, alanine, glycine, proline, pyroglutamic acid, phenylalanine and trans-4-hydroxy-D-proline under critical basic and acidic pH conditions and under various other conditions. We observed that not all solutions of the amino acid standards remain stable under the given conditions and a chemical transformation takes place. Given our findings by mass spectroscopy, additional kinetic measurements were carried out with the benchtop NMR spectrometer. We discovered that pyroglutamic acid becomes unstable under basic conditions and decarboxylates to pyrrolidone.


2021 ◽  
pp. 105233
Author(s):  
Alessandra Aiello ◽  
Emanuela Pepe ◽  
Lucia de Luca ◽  
Fabiana Pizzolongo ◽  
Raffaele Romano

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5809
Author(s):  
Bruno Coulomb ◽  
Fabien Robert-Peillard ◽  
Najib Ben Ali Gam ◽  
Salwa Sadok ◽  
Jean-Luc Boudenne

This paper presents the development and the application of a multisyringe flow injection analysis system for the fluorimetric determination of the major heat-stable known allergen in shrimp, rPen a 1 (tropomyosin). This muscle protein, made up of 284 amino acids, is the main allergen in crustaceans and can be hydrolyzed by microwave in hydrochloric acid medium to produce glutamic acid, the major amino acid in the protein. Glutamic acid can then be quantified specifically by thermal conversion into pyroglutamic acid followed by chemical derivatization of the pyroglutamic acid formed by an analytical protocol based on an OPA-NAC reagent. Pyroglutamic acid can thus be quantified between 1 and 100 µM in less than 15 min with a detection limit of 1.3 µM. The method has been validated by measurements on real samples demonstrating that the response increases with the increase in the tropomyosin content or with the increase in the mass of the shrimp sample.


Sign in / Sign up

Export Citation Format

Share Document