Effect of early and late pharmacological correction with GABA derivatives on cognitive disorders in offspring of rats with experimental preeclampsia

2021 ◽  
Vol 29 (3) ◽  
pp. 337-346
Author(s):  
Elena A. Muzyko ◽  
Valentina N. Perfilova ◽  
Ivan N. Tyurenkov ◽  
Olga S. Vasil'eva

BACKGROUND: Preeclampsia is a serious complication of pregnancy which augments the risk of cognitive disorders in the offspring at different stages of life. Presently, there are no methods with proven effectiveness for correction of post-hypoxic disorders in children of mothers with preeclampsia. AIM: To assess the cognitive functions of the offspring of rats with experimental preeclampsia (EP) through early (40th to 70th day of life) and late (24th to 25th month of life) pharmacological correction with gamma aminobutyric acid (GABA) derivatives: Succicard, Salifen, Phenibut, and the drug of comparisonPantogam. MATERIALS AND METHODS: EP was modeled by replacing drinking water with 1.8% sodium chloride solution in rats from the first day of pregnancy to delivery. In the offspring, short-term and long-term memory was studied at the age of 34, 1819, and 2526 months in the Novel object recognition test and Barnes Maze test. The functioning of the GABAergic and dopaminergic systems (which play an essential role in the development of memory) was evaluated by cases of convulsions after administering corazol at a dose of 20 mg/kg intraperitoneally (model of corazol kindling) and by haloperidol-induced catalepsy (haloperidol at a dose of 0.3 mg/kg intraperitoneally), respectively. RESULTS: Early and late pharmacological correction with GABA derivativessuccicard, Salifen, Phenibut, and comparison drug, Pantogamneutralized the negative effect of EP on the function of GABAergic and dopaminergic systems in the offspring of the experimental groups. Therapy with Succicard in puberty and long-term periods of life contributed to the improvement of short-term and long-term memory in the offspring of rats with EP. Thus, it could be reasonable enough to develop a drug against cognitive disorders in children of mothers with preeclampsia. CONCLUSION: In the offspring of rats with EP, short-term and long-term disorders of memory in the functioning of the GABAergic and dopaminergic systems were noted in the early and late stages of the individual development. Pharmacological correction with GABA derivatives improves cognitive processes and the functioning of neurotransmitter systems in the offspring of rats with complicated pregnancy. The highest effectiveness was demonstrated by succicard, and was comparable with or superior to the Pantogam (standard drug).

2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


2020 ◽  
Vol 29 (4) ◽  
pp. 710-727
Author(s):  
Beula M. Magimairaj ◽  
Naveen K. Nagaraj ◽  
Alexander V. Sergeev ◽  
Natalie J. Benafield

Objectives School-age children with and without parent-reported listening difficulties (LiD) were compared on auditory processing, language, memory, and attention abilities. The objective was to extend what is known so far in the literature about children with LiD by using multiple measures and selective novel measures across the above areas. Design Twenty-six children who were reported by their parents as having LiD and 26 age-matched typically developing children completed clinical tests of auditory processing and multiple measures of language, attention, and memory. All children had normal-range pure-tone hearing thresholds bilaterally. Group differences were examined. Results In addition to significantly poorer speech-perception-in-noise scores, children with LiD had reduced speed and accuracy of word retrieval from long-term memory, poorer short-term memory, sentence recall, and inferencing ability. Statistically significant group differences were of moderate effect size; however, standard test scores of children with LiD were not clinically poor. No statistically significant group differences were observed in attention, working memory capacity, vocabulary, and nonverbal IQ. Conclusions Mild signal-to-noise ratio loss, as reflected by the group mean of children with LiD, supported the children's functional listening problems. In addition, children's relative weakness in select areas of language performance, short-term memory, and long-term memory lexical retrieval speed and accuracy added to previous research on evidence-based areas that need to be evaluated in children with LiD who almost always have heterogenous profiles. Importantly, the functional difficulties faced by children with LiD in relation to their test results indicated, to some extent, that commonly used assessments may not be adequately capturing the children's listening challenges. Supplemental Material https://doi.org/10.23641/asha.12808607


2002 ◽  
Vol 72 (6) ◽  
pp. 516-521 ◽  
Author(s):  
Osamu Ishihara ◽  
Yasuyuki Gondo ◽  
W. Poon Leonard

1978 ◽  
Vol 10 (2) ◽  
pp. 141-148
Author(s):  
Mary Anne Herndon

In a model of the functioning of short term memory, the encoding of information for subsequent storage in long term memory is simulated. In the encoding process, semantically equivalent paragraphs are detected for recombination into a macro information unit. This recombination process can be used to relieve the limited storage capacity constraint of short term memory and subsequently increase processing efficiency. The results of the simulation give a favorable indication of the success for the use of cluster analysis as a tool to simulate the encoding function in the detection of semantically similar paragraphs.


2017 ◽  
Vol 14 (1) ◽  
pp. 172988141769231 ◽  
Author(s):  
Ning An ◽  
Shi-Ying Sun ◽  
Xiao-Guang Zhao ◽  
Zeng-Guang Hou

Visual tracking is a challenging computer vision task due to the significant observation changes of the target. By contrast, the tracking task is relatively easy for humans. In this article, we propose a tracker inspired by the cognitive psychological memory mechanism, which decomposes the tracking task into sensory memory register, short-term memory tracker, and long-term memory tracker like humans. The sensory memory register captures information with three-dimensional perception; the short-term memory tracker builds the highly plastic observation model via memory rehearsal; the long-term memory tracker builds the highly stable observation model via memory encoding and retrieval. With the cooperative models, the tracker can easily handle various tracking scenarios. In addition, an appearance-shape learning method is proposed to update the two-dimensional appearance model and three-dimensional shape model appropriately. Extensive experimental results on a large-scale benchmark data set demonstrate that the proposed method outperforms the state-of-the-art two-dimensional and three-dimensional trackers in terms of efficiency, accuracy, and robustness.


2005 ◽  
Vol 85 (1) ◽  
pp. 8-18 ◽  
Author(s):  
Jill C Heathcock ◽  
Anjana N Bhat ◽  
Michele A Lobo ◽  
James (Cole) Galloway

Abstract Background and Purpose. Infants born preterm differ in their spontaneous kicking, as well as their learning and memory abilities in the mobile paradigm, compared with infants born full-term. In the mobile paradigm, a supine infant's ankle is tethered to a mobile so that leg kicks cause a proportional amount of mobile movement. The purpose of this study was to investigate the relative kicking frequency of the tethered (right) and nontethered (left) legs in these 2 groups of infants. Subjects. Ten infants born full-term and 10 infants born preterm (<33 weeks gestational age, <2,500 g) and 10 comparison infants participated in the study. Methods. The relative kicking frequencies of the tethered and nontethered legs were analyzed during learning and short-term and long-term memory periods of the mobile paradigm. Results. Infants born full-term showed an increase in the relative kicking frequency of the tethered leg during the learning period and the short-term memory period but not for the long-term memory period. Infants born preterm did not show a change in kicking pattern for learning or memory periods, and consistently kicked both legs in relatively equal amounts. Discussion and Conclusion. Infants born full-term adapted their baseline kicking frequencies in a task-specific manner to move the mobile and then retained this adaptation for the short-term memory period. In contrast, infants born preterm showed no adaptation, suggesting a lack of purposeful leg control. This lack of control may reflect a general decrease in the ability of infants born preterm to use their limb movements to interact with their environment. As such, the mobile paradigm may be clinically useful in the early assessment and intervention of infants born preterm and at risk for future impairment.


1974 ◽  
Vol 38 (2) ◽  
pp. 495-501
Author(s):  
Gilbert B. Tunnell ◽  
Philippe R. Falkenberg

Manipulation of the context in a short-term memory paradigm produces changes in the ability to recognize the same material from long-term memory 24 hr. later. If immediate recall is accurate, later recognition is improved if this recall is conducted with the same context as occurred at learning. If immediate recall is completely inaccurate, later recognition is improved if this recall is conducted with different context than was present at learning. Short-term recall did not need to be accurate to transfer the learned nonsense trigrams to long-term memory. Manipulation of context 24 hr. after learning had no effect on recognition. Results are discussed in terms of the Waugh and Norman memory model, Tulving's encoding specificity hypothesis, and interference theory.


2021 ◽  
Vol 15 ◽  
Author(s):  
Daniela S. Rivera ◽  
Carolina B. Lindsay ◽  
Carolina A. Oliva ◽  
Francisco Bozinovic ◽  
Nibaldo C. Inestrosa

Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.


Sign in / Sign up

Export Citation Format

Share Document