Investigation of the properties and activity of DfCas9 and DsCas9 nucleases in eucaryotic cells

2021 ◽  
Author(s):  
Yelizaveta V. Vlasova ◽  
Dmitry A. Madera ◽  
Pavel M. Gershovich

This study is focused on the two novel nucleases of the CRISPR/Cas9 family, which were found in bacterial genomes of DfCas9 (Defluviimonas sp) и DsCas9 (Demequina sediminicola). Discovery of these nucleases was part of the results of a joint study conducted by BIOCAD together with Skoltech Institute of Science and Technology and Saint-Petersburg Polytechnical University (SPPU) under a grant agreement with the Department of Science and Education of Russian Federation (Agreement number 14.606.21.0006 from September, 26th 2017). Under the agreement the nucleases DfCas9 and DsCas9 were characterized in vitro by Skoltech and SPPU. Based on the aforementioned results, in this study we characterized the genome-modifying nuclease activity of these enzymes in a mammalian cell line HEK293. Specifically, we created genetic constructs designed to express the nucleases DsCas9 and DfCas9 together with the necessary guide RNA molecules (sequences of the guide RNAs were described previously) [1]. We demonstrated expression of the nucleases on a protein level, as well as activity of DfCas9 at the VEGF2 locus in HEK293 cells. The theoretical study was conducted by analyzing international and national literature. The experimental part was performed with a restriction-ligation cloning method, transient transfections, Western blot protein detection method, and a T7 nuclease-based method of detection of heteroduplex double-stranded DNA.

1995 ◽  
Vol 15 (6) ◽  
pp. 2933-2941 ◽  
Author(s):  
L N Rusché ◽  
K J Piller ◽  
B Sollner-Webb

RNA editing in kinetoplast mitochondrial transcripts involves the insertion and/or deletion of uridine residues and is directed by guide RNAs (gRNAs). It is thought to occur through a chimeric intermediate in which the 3' oligo(U) tail of the gRNA is covalently joined to the 3' portion of the mRNA at the site being edited. Chimeras have been proposed to be formed by a transesterification reaction but could also be formed by the known mitochondrial site-specific nuclease and RNA ligase. To distinguish between these models, we studied chimera formation in vitro directed by a trypanosome mitochondrial extract. This reaction was found to occur in two steps. First, the mRNA is cleaved in the 3' portion of the editing domain, and then the 3' fragment derived from this cleavage is ligated to the gRNA. The isolated mRNA 3' cleavage product is a more efficient substrate for chimera formation than is the intact mRNA, inconsistent with a transesterification mechanism but supporting a nuclease-ligase mechanism. Also, when normal mRNA cleavage is inhibited by the presence of a phosphorothioate, normal chimera formation no longer occurs. Rather, this phosphorothioate induces both cleavage and chimera formation at a novel site within the editing domain. Finally, levels of chimera-forming activity correlate with levels of mitochondrial RNA ligase activity when reactions are conducted under conditions which inhibit the ligase, including the lack of ATP containing a cleavable alpha-beta bond. These data show that chimera formation in the mitochondrial extract occurs by a nuclease-ligase mechanism rather than by transesterification.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Priscilla Ying Lei Tng ◽  
Leonela Carabajal Paladino ◽  
Sebald Alexander Nkosana Verkuijl ◽  
Jessica Purcell ◽  
Andres Merits ◽  
...  

AbstractAedes aegypti and Aedes albopictus mosquitoes are vectors of the RNA viruses chikungunya (CHIKV) and dengue that currently have no specific therapeutic treatments. The development of new methods to generate virus-refractory mosquitoes would be beneficial. Cas13b is an enzyme that uses RNA guides to target and cleave RNA molecules and has been reported to suppress RNA viruses in mammalian and plant cells. We investigated the potential use of the Prevotella sp. P5-125 Cas13b system to provide viral refractoriness in mosquito cells, using a virus-derived reporter and a CHIKV split replication system. Cas13b in combination with suitable guide RNAs could induce strong suppression of virus-derived reporter RNAs in insect cells. Surprisingly, the RNA guides alone (without Cas13b) also gave substantial suppression. Our study provides support for the potential use of Cas13b in mosquitoes, but also caution in interpreting CRISPR/Cas data as we show that guide RNAs can have Cas-independent effects.


1994 ◽  
Vol 14 (4) ◽  
pp. 2629-2639
Author(s):  
L K Read ◽  
H U Göringer ◽  
K Stuart

RNA editing in kinetoplastids probably employs a macromolecular complex, the editosome, that is likely to include the guide RNAs (gRNAs) which specify the edited sequence. Specific ribonucleoprotein (RNP) complexes which form in vitro with gRNAs (H. U. Göringer, D. J. Koslowsky, T. H. Morales, and K. D. Stuart, Proc. Natl. Acad. Sci. USA, in press) are potential editosomes or their precursors. We find that several factors are important for in vitro formation of these RNP complexes and identify specific gRNA-binding proteins present in the complexes. Preedited mRNA promotes the in vitro formation of the four major gRNA-containing RNP complexes under some conditions but is required for the formation of only a subcomponent of one complex. The 5' gRNA sequence encompassing the RYAYA and anchor regions and the 3' gRNA oligo(U) tail are both important in complex formation, since their deletion results in a dramatic decrease of some complexes and the absence of others. UV cross-linking experiments identify several proteins which are in contact with gRNA and preedited mRNA in mitochondrial extracts. Proteins of 25 and 90 kDa are highly specific for gRNAs, and the 90-kDa protein binds specifically to gRNA oligo(U) tails. The gRNA-binding proteins exhibit a differential distribution between the four in vitro-formed complexes. These experiments reveal several proteins potentially involved in RNA editing and indicate that multiple recognition elements in gRNAs are used for complex formation.


1997 ◽  
Vol 17 (9) ◽  
pp. 5377-5385 ◽  
Author(s):  
B K Adler ◽  
S L Hajduk

RNA editing in trypanosome mitochondria entails the posttranscriptional internal addition and occasional deletion of uridines from precursor mRNAs. Ample evidence exists to show that the information specifying the site and number of uridines added or deleted comes from small, mitochondrially encoded guide RNAs (gRNAs). More recent work indicates that the process involves an enzymatic cascade, initiating with an endonucleolytic cleavage of the pre-mRNA at an editing site. The cleaved editing site can undergo uridine (U) addition to or deletion from the 3' end of the 5' fragment via a mitochondrial terminal uridylyl transferase (TUTase) or terminal uridylyl exonuclease, respectively. Mitochondrial RNA ligase subsequently rejoins the mRNA. Activities to carry out these processes have been found in trypanosome mitochondria, including an editing-site-specific endonuclease activity which cleaves preedited but not edited mRNAs. We have found that this enzymatic activity cosediments with the same 19S ribonucleoprotein particle previously shown to contain TUTase, RNA ligase, and gRNAs and remains stable after salt treatment. Depletion of endogenous cytochrome b gRNAs by the addition of complementary oligonucleotides in vitro completely inhibits editing-site cleavage of synthetic preedited cytochrome b mRNA. The addition of synthetic cognate gRNA for cytochrome b but not unrelated small RNA restores editing-site cleavage. These studies show that in addition to specifying the site and number of uridines added or deleted, gRNAs provide the necessary information for cleavage by the editing-site-specific endonuclease.


2021 ◽  
Author(s):  
Dhruva Katrekar ◽  
James Yen ◽  
Yichen Xiang ◽  
Anushka Saha ◽  
Dario Meluzzi ◽  
...  

ABSTRACTAkin to short-hairpin RNAs and antisense oligonucleotides which efficaciously recruit endogenous cellular machinery such as Argonaute and RNase H to enable targeted RNA knockdown, simple long antisense guide RNAs (1) can recruit endogenous adenosine deaminases acting on RNA (ADARs) to enable programmable A-to-I RNA editing, without requiring co-delivery of any exogenous proteins. This approach is highly specific, however the efficiency is typically lower than observed with enzyme overexpression. Conjecturing this was due in part to the short half-life and residence times of guide RNAs, here we engineer highly stable circular ADAR recruiting guide RNAs (cadRNAs), which can be delivered not only by genetically encoding on DNA vectors, but also via transfection of RNA molecules transcribed in vitro. Using these cadRNAs, we observed robust RNA editing across multiple sites and cell lines, in both untranslated and coding regions of RNAs, vastly improved efficiency and durability of RNA editing, and high transcriptome-wide specificity. High transcript-level specificity was achieved by further engineering to reduce bystander editing. Additionally, in vivo delivery of cadRNAs via adeno-associated viruses (AAVs) enabled robust 38% RNA editing of the mPCSK9 transcript in C57BL/6J mice livers, and 12% UAG-to-UGG RNA correction of the amber nonsense mutation in the IDUA-W392X mouse model of mucopolysaccharidosis type I-Hurler (MPS I-H) syndrome. Taken together, cadRNAs enable efficacious programmable RNA editing with application across diverse protein modulation and gene therapeutic settings.


2019 ◽  
Author(s):  
Ryan T. Fuchs ◽  
Jennifer Curcuru ◽  
Megumu Mabuchi ◽  
Paul Yourik ◽  
G. Brett Robb

ABSTRACTCRISPR-Cas12a (Cpf1) are RNA-guided nuclease effectors of acquired immune response that act in their native organisms by cleaving targeted DNA sequences. Like CRISPR-Cas9 RNA-guided DNA targeting enzymes, Cas12a orthologs have been repurposed for genome editing in non-native organisms and for DNA manipulationin vitro. Recent studies have shown that activation of Cas12a via guide RNA-target DNA pairing causes multiple turnover, non-specific ssDNA degradation intrans, after single turnover on-target cleavage incis. We find that the non-specifictransnuclease activity affects RNA and dsDNA in addition to ssDNA, an activity made more evident by adjustment of reaction buffer composition. The magnitude of thetransnuclease activity varies depending on features of the guide RNA being used, specifically target sequence composition and length. We also find that the magnitude oftransnuclease activity varies between the three most well-studied Cas12a orthologs and that the Cas12a fromLachnospiraceaebacterium ND2006 appears to be the most active.


2017 ◽  
Vol 29 (1) ◽  
pp. 120 ◽  
Author(s):  
A. M. Spate ◽  
K. M. Whitworth ◽  
C. W. O'Gorman ◽  
A. K. Byrne ◽  
R. S. Prather ◽  
...  

The use of the CRISPR/Cas9 system has become increasingly popular for creating gene edits in both cell and embryo culture. High specificity and efficiency of editing as well as low cost and ease of use has helped to promote its use. We hypothesised that by using multiple CRISPR guides at one time, we could quickly create exact deletions spanning greater areas of sequence. A total of 5 candidate genes (A, B, C, D, E) were targeted for deletions ranging in size of 74 to 551 bp. All modifications were created through the co-injection of 2 CRISPR guide RNAs with Cas9 RNA into in vitro-produced presumptive porcine zygotes. The CRISPR guides were created using gBlocks containing the T7 promoter sequence, 18–24 bp of CRISPR guide RNA, and 85 bp of tracer RNA. The RNA structure of each guide was reviewed using RNA Folding Form as well as offsite cutting using NCBI Blast. CRISPR guide RNA pairs (20 ng μL−1) and Cas9 RNA (20 ng μL−1) were co-injected (1–3 ρl) into the cytoplasm of IVF produced porcine zygotes using the FemtoJet 4i injector. Following injections, the zygotes were cultured in vitro for 5–6 days, and viable blastocyst or morula were selected for embryo transfer into recipient gilts. Resulting pigs were assayed for expected modifications using PCR. Pigs were considered modified if an insertion or deletion was measured by gel electrophoresis and DNA sequencing. Only one pair of CRISPR guides was injected per zygote, resulting in an individual PCR assay for the gene of interest. In total, 42 live piglets were born, 24 of which were edited, yielding 57% modification. When expected modifications v. observed were analysed, only 4 of 24 pigs (16%) produced the predicted modification on at least one allele. Of the remaining 20 pigs, several showed more than one form of modification. Insertions of ranging from 1 to 400 bp were detected in 10 pigs, 9 pigs formed biallelic modifications, 6 pigs produced altered sequence for greater than 2 alleles (mosaic), 6 pigs had deletions larger than the expected ranging from 11 to 1739 bp, and 14 had deletions smaller than the expected. Due to the absence of plasmid during injections, the insertions observed contained repetitive elements from the gene being modified as well as random additional bases. Additionally, CRISPR pairs were used in cell culture of porcine fibroblast modifying gene F, where they produced 6 different deletions ranging from the expected 63b to 617 bp. We recognise that the cutting efficiency of each CRISPR guide was not measured, as our goal was to create the expected deletions from pairs of CRISPR guides. We acknowledge our hypothesis was incorrect, as this data indicates that the CRISPR/Cas9 system is a very useful tool for gene editing, however it can induce unexpected modifications when used in pairs, in cell and embryo culture. Study was supported by funding from Food for the 21st Century and NIH (U42OD011140).


2020 ◽  
Vol 1 (1) ◽  
pp. 69-72
Author(s):  
Ji Luan ◽  
Zhen Li ◽  
Hailong Wang ◽  
Jun Fu ◽  
Youming Zhang

Background: CRISPR-Cas9 is a powerful technology that allows us to modify DNA sequences in a specific manner across a variety of organisms. Due to its high efficiency and specificity, and ease of use, it becomes a commonly used method for gene editing. Although many structural and biochemical studies have been carried out to understand the fundamental mechanism of CRISPR/Cas9, our understanding of CRISPR/Cas9 caused off-target effects is still lacking. Methods: The enhanced in vitro cleavage activity of Cas9 protein from Streptococcus pyogenes (SpCas9) was evaluated by both synthetic crRNA-tracrRNA duplexes and in vitro transcribed single guide RNAs. Results: Here, we report an unexpected finding that mismatches between the guide RNA and target DNA significantly enhanced the in vitro cleavage activity of SpCas9 by more than 2 folds. Conclusion: Our observation that mismatches between the guide RNA and target DNA can dramatically increase the in vitro cleavage of Cas9 suggests the potential sequence preference for the CRSIPR/Cas9 system.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Cathryn M. Siegrist ◽  
Sean M. Kinahan ◽  
Taylor Settecerri ◽  
Adrienne C. Greene ◽  
Joshua L. Santarpia

Abstract A vaccine for smallpox is no longer administered to the general public, and there is no proven, safe treatment specific to poxvirus infections, leaving people susceptible to infections by smallpox and other zoonotic Orthopoxviruses such as monkeypox. Using vaccinia virus (VACV) as a model organism for other Orthopoxviruses, CRISPR–Cas9 technology was used to target three essential genes that are conserved across the genus, including A17L, E3L, and I2L. Three individual single guide RNAs (sgRNAs) were designed per gene to facilitate redundancy in rendering the genes inactive, thereby reducing the reproduction of the virus. The efficacy of the CRISPR targets was tested by transfecting human embryonic kidney (HEK293) cells with plasmids encoding both SaCas9 and an individual sgRNA. This resulted in a reduction of VACV titer by up to 93.19% per target. Following the verification of CRISPR targets, safe and targeted delivery of the VACV CRISPR antivirals was tested using adeno-associated virus (AAV) as a packaging vector for both SaCas9 and sgRNA. Similarly, AAV delivery of the CRISPR antivirals resulted in a reduction of viral titer by up to 92.97% for an individual target. Overall, we have identified highly specific CRISPR targets that significantly reduce VACV titer as well as an appropriate vector for delivering these CRISPR antiviral components to host cells in vitro.


2020 ◽  
Vol 26 ◽  
pp. 176-182
Author(s):  
I. S. Hnatiuk ◽  
O. I. Varchenko ◽  
M. F. Parii ◽  
Yu. V. Symonenko

Aim. To create a genetic construct carrying the bacterial protein Cas9 gene, the reporter β-glucuronidase gus gene, as well as the marker phosphinotricin-N-acetyltransferase bar gene for plant genome editing. Methods. Molecular-biological, biotechnological, microbiological and bioinformatic methods were used in the study; Golden Gate molecular cloning method was used to create genetic constructs. Results. The genetic construct pSPE2053 which carries the Cas9 endonuclease gene, the gus and bar genes was created; the assembly correctness of all vector elements was confirmed by polymerase chain reaction; the construct was transferred to Escherichia coli and Agrobacterium tumefaciens cells; β-glucuronidase gene expression was verified by histochemical analysis after Nicotiana rustica L transient genetic transformation. Conclusions. The created genetic construct can be used to edit the plant genome for both stable and transient genetic transformation to accumulate recombinant Cas9 protein. The guide RNA sequences may be subsequently transferred into such plants using either stable or transient genetic transformation or traditional crossing methods. Keywords: cloning, genetic construction, gus and bar genes, Cas9 endonuclease protein, transient expression. 


Sign in / Sign up

Export Citation Format

Share Document