scholarly journals Effect of Lumbar Stabilization Exercise using Blood Flow Restriction on Muscle Strength, Muscular Endurance, and Gait in Patients with Chronic Back Pain

Author(s):  
Sang Lee
2021 ◽  
Vol 47 ◽  
pp. e4
Author(s):  
Daniel Germano Maciel ◽  
Mikhail Santos Cerqueira ◽  
Jean Arthur Mendonça Barboza ◽  
José Diego Sales do Nascimento ◽  
Wouber Hérickson de Brito Vieira

Author(s):  
William Neil Morley ◽  
Shane Ferth ◽  
Mathew Ian Bergens Debenham ◽  
Matthew Boston ◽  
Geoffrey Alonzo Power ◽  
...  

Despite compelling muscular structure and function changes resulting from blood flow restricted (BFR) resistance training, mechanisms of action remain poorly characterized. Alterations in tissue O2 saturation (TSI%) and metabolites are potential drivers of observed changes, but their relationships with degree of occlusion pressure are unclear. We examined local TSI% and blood lactate (BL) concentration during BFR training to failure using different occlusion pressures on strength, hypertrophy, and muscular endurance over an 8-week training period. Twenty participants (11M:9F) trained 3/wk for 8wk using high pressure (100% resting limb occlusion pressure, LOP, 20%1RM), moderate pressure (50% LOP, 20%1RM), or traditional resistance training (70%1RM). Strength, size, and muscular endurance were measured pre/post training. TSI% and BL were quantified during a training session. Despite overall increases, no group preferentially increased strength, hypertrophy, or muscular endurance (p>0.05). Neither TSI% nor BL concentration differed between groups (p>0.05). Moderate pressure resulted in greater accumulated deoxygenation stress (TSI%*time) (-6352±3081, -3939±1835, -2532±1349 au for moderate pressure, high pressure, and TRT, p=0.018). We demonstrate that BFR training to task-failure elicits similar strength, hypertrophy, and muscular endurance changes to traditional resistance training. Further, varied occlusion pressure does not impact these outcomes, nor elicit changes in TSI% or BL concentrations. Novelty Bullets • Training to task failure with low-load blood flow restriction elicits similar improvements to traditional resistance training, regardless of occlusion pressure. • During blood flow restriction, altering occlusion pressure does not proportionally impact tissue O2 saturation nor blood lactate concentrations


2021 ◽  
Vol 1 (5) ◽  
pp. 263502542110326
Author(s):  
Steven R. Dayton ◽  
Simon J. Padanilam ◽  
Tyler C. Sylvester ◽  
Michael J. Boctor ◽  
Vehniah K. Tjong

Background: Blood flow restriction (BFR) training restricts arterial inflow and venous outflow from the extremity and can produce gains in muscle strength at low loads. Low-load training reduces joint stress and decreases cardiovascular risk when compared with high-load training, thus making BFR an excellent option for many patients requiring rehabilitation. Indications: Blood flow restriction has shown clinical benefit in a variety of patient populations including healthy patients as well as those with osteoarthritis, anterior cruciate ligament reconstruction, polymyositis/dermatomyositis, and Achilles tendon rupture. Technique Description: This video demonstrates BFR training in 3 clinical areas: upper extremity resistance training, lower extremity resistance training, and low-intensity cycling. All applications of BFR first require determination of total occlusion pressure. Upper extremity training requires inflating the tourniquet to 50% of total occlusion pressure, while lower extremity exercises use 80% of total occlusion pressure. Low-load resistance training exercises follow a specific repetition scheme: 30 reps followed by a 30-second rest and then 3 sets of 15 reps with 30-seconds rest between each. During cycle training, 80% total occlusion pressure is used as the patient cycles for 15 minutes without rest. Results: Augmenting low-load resistance training with BFR increases muscle strength when compared with low-load resistance alone. In addition, low-load BFR has demonstrated an increase in muscle mass greater than low-load training alone and equivalent to high-load training absent BFR. A systematic review determined the safety of low-load training with BFR is comparable to traditional high-intensity resistance training. The most common adverse effects include exercise intolerance, discomfort, and dull pain which are also frequent in patients undergoing traditional resistance training. Severe adverse effects including deep vein thrombosis, pulmonary embolism, and rhabdomyolysis are exceedingly rare, less than 0.006% according to a national survey. Patients undergoing BFR rehabilitation experience less perceived exertion and demonstrate decreased pain scores compared with high-load resistance training. Conclusion: Blood flow restriction training is an effective alternative to high-load resistance training for patients requiring musculoskeletal rehabilitation for multiple disease processes as well as in the perioperative setting. Blood flow restriction has been shown to be a safe training modality when managed by properly trained physical therapists and athletic trainers.


2018 ◽  
Vol 118 (9) ◽  
pp. 1831-1843 ◽  
Author(s):  
Ethan C. Hill ◽  
Terry J. Housh ◽  
Joshua L. Keller ◽  
Cory M. Smith ◽  
Richard J. Schmidt ◽  
...  

2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Emrah Korkmaz ◽  
Gürhan Dönmez ◽  
Kubilay Uzuner ◽  
Naila Babayeva ◽  
Şerife Şeyma Torgutalp ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259574
Author(s):  
Leonardo Peterson dos Santos ◽  
Rafaela Cavalheiro do Espírito Santo ◽  
Thiago Rozales Ramis ◽  
Juliana Katarina Schoer Portes ◽  
Rafael Mendonça da Silva Chakr ◽  
...  

Introduction Rheumatoid arthritis(RA) and osteoarthritis(OA) patients showed systemic manifestations that may lead to a reduction in muscle strength, muscle mass and, consequently, to a reduction in functionality. On the other hand, moderate intensity resistance training(MIRT) and high intensity resistance training(HIRT) are able to improve muscle strength and muscle mass in RA and OA without affecting the disease course. However, due to the articular manifestations caused by these diseases, these patients may present intolerance to MIRT or HIRT. Thus, the low intensity resistance training combined with blood flow restriction(LIRTBFR) may be a new training strategy for these populations. Objective To perform a systematic review with meta-analysis to verify the effects of LIRTBFR on muscle strength, muscle mass and functionality in RA and OA patients. Materials and methods A systematic review with meta-analysis of randomized clinical trials(RCTs), published in English, between 1957–2021, was conducted using MEDLINE(PubMed), Embase and Cochrane Library. The methodological quality was assessed using Physiotherapy Evidence Database scale. The risk of bias was assessed using RoB2.0. Mean difference(MD) or standardized mean difference(SMD) and 95% confidence intervals(CI) were pooled using a random-effects model. A P<0.05 was considered statistically significant. Results Five RCTs were included. We found no significant differences in the effects between LIRTBFR, MIRT and HIRT on muscle strength, which was assessed by tests of quadriceps strength(SMD = -0.01[-0.57, 0.54], P = 0.96; I² = 58%) and functionality measured by tests with patterns similar to walking(SMD = -0.04[-0.39, 0.31], P = 0.82; I² = 0%). Compared to HIRT, muscle mass gain after LIRTBFR was reported to be similar. When comparing LIRTBFR with low intensity resistance training without blood flow restriction(LIRT), the effect LIRTBFR was reported to be higher on muscle strength, which was evaluated by the knee extension test. Conclusion LIRTBFR appears to be a promising strategy for gains in muscle strength, muscle mass and functionality in a predominant sample of RA and OA women.


Sign in / Sign up

Export Citation Format

Share Document