Velocity Structure of the Northeastern End of the Bayan Har Block, China, and the Seismogenic Environment of the Jiuzhaigou and Songpan-Pingwu Earthquakes: Inferences from Double-Difference Tomography

Author(s):  
Wen Yang ◽  
Zhifeng Ding ◽  
Jie Liu ◽  
Jia Cheng ◽  
Xuemei Zhang ◽  
...  

ABSTRACT The 2017 Mw 6.5 Jiuzhaigou mainshock hit the northeastern end of the Bayan Har block, which has experienced many historical earthquakes, including the 1976 M 7.2 Songpan-Pingwu earthquake swarm. We used the double-difference tomography method to perform a joint inversion of the seismic source and P-wave velocity (VP) structure of the Jiuzhaigou-Songpan-Pingwu region. The results show significant lateral heterogeneity in the VP in the mid-upper crust. The velocity structure in the shallow crust correlates well with the surface geology. The Jiuzhaigou mainshock and Songpan-Pingwu earthquake swarm both occurred at the boundary between high- and low-VP anomalies. The Songpan-Pingwu earthquake swarm may be related to the eastward flow of low-viscosity material in the mid-lower crust of the Tibetan plateau. Low-viscosity material intrudes into the bedrock when it encounters the rigid Motianling massif, resulting in surface uplift and thrust earthquakes. By contrast, the Jiuzhaigou earthquake is associated with strain energy accumulating at the boundary between high- and low-VP anomalies related to the different movement rates of the low-VP material in the mid-lower crust and the high-VP body in the mid-upper crust. In this case, the high-VP body ruptures with a strike-slip sense to the southeast.


2021 ◽  
Author(s):  
Anna Jegen ◽  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Udo Barckhausen ◽  
Ingo Heyde ◽  
...  

<p>The Lau Basin is a young back-arc basin steadily forming at the Indo-Australian-Pacific plate boundary, where the Pacific plate is subducting underneath the Australian plate along the Tonga-Kermadec island arc. Roughly 25 Ma ago, roll-back of the Kermadec-Tonga subduction zone commenced, which lead to break up of the overriding plate and thus the formation of the western Lau Ridge and the eastern Tonga Ridge separated by the emerging Lau Basin.</p><p>As an analogue to the asymmetric roll back of the Pacific plate, the divergence rates decline southwards hence dictating an asymmetric, V-shaped basin opening. Further, the decentralisation of the extensional motion over 11 distinct spreading centres and zones of active rifting has led to the formation of a composite crust formed of a microplate mosaic. A simplified three plate model of the Lau Basin comprises the Tonga plate, the Australian plate and the Niuafo'ou microplate. The northeastern boundary of the Niuafo'ou microplate is given by two overlapping spreading centres (OLSC), the southern tip of the eastern axis of the Mangatolu Triple Junction (MTJ-S) and the northern tip of the Fonualei Rift spreading centre (FRSC) on the eastern side. Slow to ultraslow divergence rates were identified along the FRSC (8-32 mm/a) and slow divergence at the MTJ (27-32 mm/a), both decreasing southwards. However, the manner of divergence has not yet been identified. Additional regional geophysical data are necessary to overcome this gap of knowledge.</p><p>Research vessel RV Sonne (cruise SO267) set out to conduct seismic refraction and wide-angle reflection data along a 185 km long transect crossing the Lau Basin at ~16 °S from the Tonga arc in the east, the overlapping spreading centres, FRSC1 and MTJ-S2, and extending as far as a volcanic ridge in the west. The refraction seismic profile consisted of 30 ocean bottom seismometers. Additionally, 2D MCS reflection seismic data as well as magnetic and gravimetric data were acquired.</p><p>The results of our P-wave traveltime tomography show a crust that varies between 4.5-6 km in thickness. Underneath the OLSC the upper crust is 2-2.5 km thick and the lower crust 2-2.5 km thick. The velocity gradients of the upper and lower crust differ significantly from tomographic models of magmatically dominated oceanic ridges. Compared to such magmatically dominated ridges, our final P-wave velocity model displays a decreased velocity gradient in the upper crust and an increased velocity gradient in the lower crust more comparable to tectonically dominated rifts with a sparse magmatic budget.</p><p>The dominance of crustal stretching in the regional rifting process leads to a tectonical stretching, thus thinning of the crust under the OLSC and therefore increasing the lower crust’s velocity gradient. Due to the limited magmatic budget of the area, neither the magnetic anomaly nor the gravity data indicate a magmatically dominated spreading centre. We conclude that extension in the Lau Basin at the OLSC at 16 °S is dominated by extensional processes with little magmatism, which is supported by the distribution of seismic events concentrated at the northern tip of the FRSC.</p>



2019 ◽  
Vol 755 ◽  
pp. 109-126
Author(s):  
Jiyan Lin ◽  
Walter D. Mooney ◽  
Fuyun Wang ◽  
Yonghong Duan ◽  
Xiaofeng Tian ◽  
...  


2016 ◽  
Vol 46 (4) ◽  
pp. 269-287 ◽  
Author(s):  
Barbora Šimonová ◽  
Miroslav Bielik

Abstract The international seismic project CELEBRATION 2000 brought very good information about the P-wave velocity distribution in the Carpathian-Pannonian Basin litosphere. In this paper seismic data were used for transformations of in situ P-wave velocities to in situ densities along all profiles running across the Western Carpathians and the Pannonian Basin: CEL01, CEL04, CEL05, CEL06, CEL09, CEL11 and CEL12. The calculation of rock densities in the crust and lower lithosphere was done by the transformation of seismic velocities to densities using the formulae of Sobolev-Babeyko, Christensen-Mooney and in the lower lithosphere also by Lachenbruch-Morgan’s formula. The density of the upper crust changes significantly in the vertical and horizontal directions, while the interval ranges of the calculated lower crust densities narrow down prominently. The lower lithosphere is the most homogeneous - the intervals of the calculated densities for this layer are already very narrow. The average density of the upper crust (ρ̅ = 2.60 g · cm−3) is the lowest in the Carpathian Foredeep region. On the contrary, the highest density of this layer (ρ̅ = 2.77 g · cm−3) is located in the Bohemian Massif. The average densities ρ̅ of the lower crust vary between 2.90 and 2.98 g · cm−3. The Palaeozoic Platform and the East European Craton have the highest density (ρ̅ = 2.98 g · cm−3 and ρ̅ = 2.97 g · cm−3, respectively). The lower crust density is the lowest (ρ̅ = 2.90 g · cm−3) in the Pannonian Basin. The range of calculated average densities ρ̅ for the lower lithosphere is changed in the interval from 3.35 to 3.40 g · cm−3. The heaviest lower lithosphere can be observed in the East European Craton (ρ̅ = 3.40 g · cm−3). The lower lithosphere of the Transdanubian Range and the Palaeozoic Platform is characterized by the lowest density ρ̅ = 3.35 g · cm−3.



1992 ◽  
Vol 29 (2) ◽  
pp. 301-313 ◽  
Author(s):  
Deping Chian ◽  
Keith Louden

The velocity structure of the continental crust on the outer shelf of southwestern Greenland is determined from dense wide-angle reflection–refraction data obtained with large air-gun sources and ocean bottom seismometers along a 230 km seismic line. This line crosses the geological boundary between the Archean block and the Ketilidian mobile belt. Although the data have high noise levels, P- and S-wave arrivals from within the upper, intermediate, and lower crust, and at the Moho boundary, can be consistently identified and correlated with one-dimensional WKBJ synthetic seismograms. In the Archean, P- and S-wave velocities in the upper crust are 6.0 and 3.4 km/s, while in the intermediate crust they are 6.4 and 3.6 km/s. These velocities match for the upper crust a quartz–feldspar gneiss composition and for the intermediate crust an amphibolitized pyroxene granulite. In the Ketilidian mobile belt, P- and S-wave velocities are 5.6 and 3.3 km/s for the upper crust and 6.3 and 3.6 km/s for the intermediate crust. These velocities may represent quartz granite in the upper crust and granite and granitic gneiss in the intermediate crust. The upper crust is ~5 km thick in the Archean block and the Ketilidian mobile belt, and thickens to ~9 km in the southern part of the Archean. This velocity structure supports a Precambrian collisional mechanism between the Archean block and Ketilidian mobile belt. The lower crust has a small vertical velocity gradient from 6.6 km/s at 15 km depth to 6.9 km/s at 30 km depth (Moho) along the refraction line, with a nearly constant S-wave velocity around 3.8 km/s. These velocities likely represent a gabbroic and hornblende granulite composition for the lower crust. This typical (but somewhat thin) Precambrian crustal velocity structure in southwestern Greenland shows no evidence for a high-velocity, lower crustal, underplated layer caused by the Mesozoic opening of the Labrador Sea.



1994 ◽  
Vol 31 (12) ◽  
pp. 1806-1821 ◽  
Author(s):  
Maurice Recq ◽  
Isabelle Le Roy ◽  
Philippe Charvis ◽  
Jean Goslin ◽  
Daniel Brefort

Mont Ross is the main volcanic feature of the Kerguelen Archipelago (terres Australes et Antarctiques françaises). This newly formed volcano buildup over 2 Ma provides us with an outstanding model of volcanism occurring on an intraplate structure already aged 40 Ma. Mont Ross is the subaerial part of a plutonic complex located in Galliéni Peninsula. From seismic refraction studies, P-wave velocities within the upper crust range downward from 5.35 km/s at sea level to 6.60 km/s at a depth of 11 km. These are definitely higher than those encountered within surrounding basalts known as plateau basalts. These high velocities reveal, at first glance, an origin and composition of the basement of Mont Ross far distinct from those of tholeiitic or transitional lava flows generated near spreading centres. By comparison with plutonic ring complexes, it is reasonable to state that monzonite and syenite are the basic materials of the basement. Seismic velocities (6.85 to 7.30–7.35 km/s) and related Poisson ratio (σ = 0.30) within lower crust are consistent with gabbros as prominent material. The thickness of the lower crust below Mont Ross (6–7 km) is roughly the same as that below the archipelago. Gabbros are exposed around several plutonic ring complexes spread over the archipelago. The transition to mantle might be modelled by a 2 km thick transition zone, with high velocity gradient, already noticed below the archipelago. Velocities of 7.30–7.35 km/s at the base of the crust below Mont Ross do not preclude contamination of the lower crust by mantle material. Both gravity and seismic data substantiate the occurrence of high density (velocity) within the upper crust below Mont Ross. Isostatic compensation of Mont Ross is rather achieved by a flexural deflection of the lithosphere than by an Airy-type model. The structures of Mont Ross and Hawaiian volcanoes bear analogies likely related to their intraplate genesis.



2020 ◽  
Author(s):  
Shaohua Qi ◽  
Qiyuan Liu ◽  
Jiuhui Chen ◽  
Biao Guo

<p>It is widely accepted that the ongoing India-Asia collision since approximately 50 Ma ago has resulted in the uplift and eastward expansion of the Tibetan Plateau. Yet the interpretations of its dynamic process and deformation mechanism still remain controversial. Distinct models that emphasize particular aspects of the tectonic features have been proposed, including fault-controlled rigid blocks, continuous deformation of lithosphere and lower crust flow.</p><p>One possible way to reconcile these models is to investigate crustal deformation at multiple depths simultaneously, as well as crust-mantle interaction. Seismic anisotropy is considered as an effective tool to study the geometry and distribution of subsurface deformation, due to its direct connection to the stress state and strain history of anisotropic structures and fabrics. In the eastern margin of Tibetan plateau, previous studies of seismic anisotropy have already provided useful insights into the bulk anisotropic properties of the entire crust or upper mantle, based on shear wave splitting analyses of Moho Ps and XKS phases.</p><p>In this study, we went further to extract anisotropic parameters of multiple crustal layers by waveform inversion of teleseismic receiver function (RF) data from the western-Sichuan temporal seismic array using particle swarm optimization. Instead of directly fitting the backazimuthal stacking of RFs from each station, we translated the RF data into backazimuthal harmonic coefficients using harmonic decomposition technique, which separates the signals (of planar isotropic structure and anisotropy) from the scattering noise generated by non-planar lateral heterogeneity. The constant (k=0) and k=1, 2 terms of backazimuthal harmonic coefficients were used in our inversion. We also fixed the anisotropic model to slow-axis symmetry to avoid ambiguous interpretations.</p><p>Our results show that:</p><p>(1) Anisotropy with a titled anisotropy axis of symmetry is more commonly observed than pure azimuthal anisotropy in our data, which has been also reported by other RF studies across the surrounding areas of Tibetan plateau.</p><p>(2) The trends of slow symmetry axis vary from the upper to lower part of the crust in both Chuandian and Songpan units, indicating the deformation of the upper crust is decoupled from that of the lower crust in these two regions, while the trends are more consistent throughout the crust in the Sichuan basin.</p><p>(3) In the upper crust, the trends show a degree of tendency to lie parallel to the major geological features such as the Xianshuihe and Longmenshan faults, exhibiting a fault-controlled deformation or movement. In the middle and lower crust, the trends are NS or NW-SE in Chuandian unit and NE-SW in Songpan unit, which are coincident with the apparent extension directions of the ductile crustal flow.</p>



Sign in / Sign up

Export Citation Format

Share Document