anisotropy axis
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 20)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Igor S. Poperechny

A kinetic theory of magnetic response of uniaxial antiferromagnetic nanoparticles is presented. Within the developed framework, a particular case when an external field is applied strictly along the anisotropy axis is considered in detail. Analysis of the relaxation spectrum of an antiferromagnetic particle with a spontaneous magnetic moment is performed. It is shown that in a wide frequency range the magnetic response of such particle is determined entirely by the relaxation mode with the longest time. An analytical expression for this time that explicitly contains a value of the decompensation magnetic moment is derived. Also, simple formulae for both static and dynamic longitudinal magnetic susceptibility of an antiferromagnetic nanoparticle are obtained. According to them, longitudinal susceptibility grows quadratically with the value of the spontaneous magnetic moment. Besides, if the latter is not zero, the change of the static susceptibility with temperature turns out to be non-monotonic. The influence of the spontaneous magnetic moment of the particle on the magnetization curves in strong fields is analysed using both energy approach and kinetic theory. The calculated dependences of the dynamic coercivity on the amplitude and variation rate of the applied field are qualitatively compared with experimental data. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012001
Author(s):  
A A Akulov ◽  
O S Trushin ◽  
A A Popov ◽  
A N Pestova ◽  
L A Mazaletsky ◽  
...  

Abstract Nanocolumnar Co thin films growth by oblique angle deposition on Si substrate is experimentally studied. Formation of regular arrays of tilted Co nanocolumns has been observed at incidence angles more than 70°. It was found that the optimal conditions for nanostructuring are realized at the inclination angle 85°. As obtained films have magnetic anisotropy axis inclined to the substrate surface and oriented along nanocolumns. Such films might be perspective material for applications as a magnetic recording media for next generations of hard disks.


Author(s):  
A. I. Semenikhin ◽  
D. V. Semenikhina ◽  
Yu. V. Yukhanov ◽  
P. V. Blagovisnyy ◽  
I. V. Ilyin

Introduction. The scattering patterns of non-absorbing coded checkerboard-like meta-coatings (MCs) applied for reducing the radar cross section (RCS) of metal surfaces inevitably contain side diffraction lobes. Therefore, the development of MCs with a low level of diffraction lobes is relevant. For this purpose, it is proposed to use checkerboard-like MCs in the form of a set of several basic flat blocks with the same dimensions. The paper discusses two such basic MC blocks with different coding matrices. The cells of the metasurface contain two coupled elliptical ring resonators and are distinguished by a 2-bit coding of the tilt angle of the anisotropy axis. Coding matrices of the MC blocks are built according to the block principle.Aim. To investigate experimentally and numerically backscatter patterns (BSP) for consonant (co-) and orthogonal (cross-) polarizations of the two developed flat blocks of the 2-bit digital nonabsorbing anisotropic MCs for different planes and polarizations of irradiation.Materials and methods. Full-wave simulation of the MC blocks was carried out using the HFSS software by the finite element method. BSP measurements of the fabricated MC layouts were performed in an anechoic chamber of the Center for Collective Usage “Applied Electrodynamics and Antenna Measurements” of the Southern Federal University using an automated information and computing complex.Results. The RCS reduction for the two blocks under normal irradiation is approximately the same and not less than 12 dB over the 9.8…21 GHz band. A good matching between the simulation and measurement results of backscattering patterns of the blocks in the region of the central lobes for various planes and polarizations of the irradiation is noted. In the principal planes, the blocks cancel the central lobes of the BSP by 10…25 dB; in the sector of angles of around ±40°, the backward RCS of the blocks is lower than that of the reference. In the diagonal planes, there is a cancellation of the RCS by 13…15 dB and an expansion of the central lobe of the BSP for copolarizations, as well as a bifurcation of this lobe for crosspolarizations in the sector of angles ±9°; outside of this sector the RCSs of the blocks are commensurate with the RCS of the reference.Conclusion. The developed blocks of the 2-bit digital nonabsorbing anisotropic MCs can be used for broadband cancellation of the RCS of metal surfaces.


2021 ◽  
Vol 7 (23) ◽  
pp. eabf3096
Author(s):  
Dmytro Afanasiev ◽  
Jorrit R. Hortensius ◽  
Mattias Matthiesen ◽  
Samuel Mañas-Valero ◽  
Makars Šiškins ◽  
...  

Van der Waals magnets provide an ideal playground to explore the fundamentals of low-dimensional magnetism and open opportunities for ultrathin spin-processing devices. The Mermin-Wagner theorem dictates that as in reduced dimensions isotropic spin interactions cannot retain long-range correlations, the long-range spin order is stabilized by magnetic anisotropy. Here, using ultrashort pulses of light, we control magnetic anisotropy in the two-dimensional van der Waals antiferromagnet NiPS3. Tuning the photon energy in resonance with an orbital transition between crystal field split levels of the nickel ions, we demonstrate the selective activation of a subterahertz magnon mode with markedly two-dimensional behavior. The pump polarization control of the magnon amplitude confirms that the activation is governed by the photoinduced magnetic anisotropy axis emerging in response to photoexcitation of ground state electrons to states with a lower orbital symmetry. Our results establish pumping of orbital resonances as a promising route for manipulating magnetic order in low-dimensional (anti)ferromagnets.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheng-Qun Su ◽  
Shu-Qi Wu ◽  
Masato Hagihala ◽  
Ping Miao ◽  
Zhijian Tan ◽  
...  

AbstractWater reorientation is essential in a wide range of chemical and biological processes. However, the effects of such reorientation through rotation around the metal–oxygen bond on the chemical and physical properties of the resulting complex are usually ignored. Most studies focus on the donor property of water as a recognized σ donor-type ligand rather than a participant in the π interaction. Although a theoretical approach to study water-rotation effects on the functionality of a complex has recently been conducted, it has not been experimentally demonstrated. In this study, we determine that the magnetic anisotropy of a Co(II) complex can be effectively controlled by the slight rotation of coordinating water ligands, which is achieved by a two-step structural phase transition. When the water molecule is rotated by 21.2 ± 0.2° around the Co–O bond, the directional magnetic susceptibility of the single crystal changes by approximately 30% along the a-axis due to the rotation of the magnetic anisotropy axis through the modification of the π interaction between cobalt(II) and the water ligand. The theoretical calculations further support the hypothesis that the reorientation of water molecules is a key factor contributing to the magnetic anisotropy transition of this complex.


2021 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Anatoli A. Rogovoy ◽  
Oleg V. Stolbov ◽  
Olga S. Stolbova

In this paper, the behavior of a ferromagnetic material is considered in the framework of microstructural modeling. The equations describing the behavior of such material in the magnetic field, are constructed based on minimization of total magnetic energy with account of limitations imposed on the spontaneous magnetization vector and scalar magnetic potential. This conditional extremum problem is reduced to the unconditional extremum problem using the Lagrange multiplier. A variational (weak) formulation is written down and linearization of the obtained equations is carried out. Based on the derived relations a solution of a two-dimensional problem of magnetization of a unit cell (a grain of a polycrystal or a single crystal of a ferromagnetic material) is developed using the finite element method. The appearance of domain walls is demonstrated, their thickness is determined, and the history of their movement and collision is described. The graphs of distributions of the magnetization vector in domains and in domain walls in the external magnetic field directed at different angles to the anisotropy axis are constructed and the magnetization curves for a macrospecimen are plotted. The results obtained in the present paper (the thickness of the domain wall, the formation of a 360-degree wall) are in agreement with the ones available in the current literature.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kerstin Birster ◽  
Rouven Schweitzer ◽  
Christoph Schopphoven ◽  
Andreas Tschöpe

AbstractNickel (Ni) nanorods were prepared by the anodized aluminum oxide (AAO) template method and dispersed in poly(acrylamide) (PAM) hydrogels. The deformation of the magnetoresponsive composites was studied with particular attention to the consequences of finite magnetic shape anisotropy as compared to rigid dipoles on the field-dependent torque. For comparison with experiments, the composite was described as an elastic continuum with a local magnetic torque density, applied by discrete particles and determined by the local orientation of their magnetic anisotropy axis with respect to the magnetic field. The mean magnetic moment of the single domain particles m and their volume density in the composite φvol were derived from the static field-dependent optical transmission (SFOT) of linear polarized light. The mechanical coupling between the particles and their viscoelastic environment was retrieved from the rotational dynamics of the nanorods using oscillating field-dependent optical transmission (OFOT) measurements. Field- and orientation-dependent magnetization measurements were analyzed using the Stoner–Wohlfarth (SW) model and a valid parameter range was identified by introducing an effective anisotropy constant KA as a new empirical model parameter. This adapted SW-model for quantitative description of the field- and orientation dependence of the magnetic torque was validated by measuring the local rotation of nanorods in a soft elastic hydrogel. Finally, torsional and bending deformation of thin magnetically textured composite filaments were computed and compared with experiments.


2020 ◽  
Vol 14 (8) ◽  
pp. 2537-2543
Author(s):  
Martin Rongen ◽  
Ryan Carlton Bay ◽  
Summer Blot

Abstract. We report on a depth-dependent observation of a directional anisotropy in the recorded intensity of backscattered light as measured by an oriented laser dust logger. The measurement was performed in a drill hole at the geographic South Pole about a kilometer away from the IceCube Neutrino Observatory. The drill hole has remained open for access since the SPICEcore collaboration retrieved a 1751 m ice core. We find the anisotropy axis of 126±3∘ as measured below 1100 m to be compatible with the local flow direction. The observation is discussed in comparison to a similar anisotropy observed in data from the IceCube Neutrino Observatory and favors a birefringence-based scenario over previously suggested Mie-scattering-based explanations. In the future, the measurement principle, when combined with a full-chain simulation, may have the potential to provide a continuous record of fabric properties along the entire depth of a drill hole.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3153
Author(s):  
Diamantoula Maniaki ◽  
Panagiota S. Perlepe ◽  
Evangelos Pilichos ◽  
Sotirios Christodoulou ◽  
Mathieu Rouzières ◽  
...  

A family of four Ln(III) complexes has been synthesized with the general formula [Ln2(NO3)4(L)2(S)] (Ln = Gd, Tb, Er, and S = H2O; 1, 2 and 4, respectively/Ln = Dy, S = MeOH, complex 3), where HL is the flexible ditopic ligand N’-(1-(pyridin-2-yl)ethylidene)pyridine-2-carbohydrazide. The structures of isostructural MeOH/H2O solvates of these complexes were determined by single-crystal X-ray diffraction. The two LnIII ions are doubly bridged by the deprotonated oxygen atoms of two “head-to-head” 2.21011 (Harris notation) L¯ ligands, forming a central, nearly rhombic {LnIII2(μ-OR)2}4+ core. Two bidentate chelating nitrato groups complete a sphenocoronal 10-coordination at one metal ion, while two bidentate chelating nitrato groups and one solvent molecule (H2O or MeOH) complete a spherical capped square antiprismatic 9-coordination at the other. The structures are critically compared with those of other, previously reported metal complexes of HL or L¯. The IR spectra of 1–4 are discussed in terms of the coordination modes of the organic and inorganic ligands involved. The f-f transitions in the solid-state (diffuse reflectance) spectra of the Tb(III), Dy(III), and Er(III) complexes have been fully assigned in the UV/Vis and near-IR regions. Magnetic susceptibility studies in the 1.85–300 K range reveal the presence of weak, intramolecular GdIII∙∙∙GdIII antiferromagnetic exchange interactions in 1 [J/kB = −0.020(6) K based on the spin Hamiltonian Ĥ = −2J(ŜGd1∙ ŜGd2)] and probably weak antiferromagnetic LnIII∙∙∙LnIII exchange interactions in 2–4. Ac susceptibility measurements in zero dc field do not show frequency dependent out-of-phase signals, and this experimental fact is discussed for 3 in terms of the magnetic anisotropy axis for each DyIII center and the oblate electron density of this metal ion. Complexes 3 and 4 are Single-Molecule Magnets (SMMs) and this behavior is optimally observed under external dc fields of 600 and 1000 Oe, respectively. The magnetization relaxation pathways are discussed and a satisfactory fit of the temperature and field dependencies of the relaxation time τ was achieved considering a model that employs Raman, direct, and Orbach relaxation mechanisms.


2020 ◽  
Author(s):  
Shaohua Qi ◽  
Qiyuan Liu ◽  
Jiuhui Chen ◽  
Biao Guo

<p>It is widely accepted that the ongoing India-Asia collision since approximately 50 Ma ago has resulted in the uplift and eastward expansion of the Tibetan Plateau. Yet the interpretations of its dynamic process and deformation mechanism still remain controversial. Distinct models that emphasize particular aspects of the tectonic features have been proposed, including fault-controlled rigid blocks, continuous deformation of lithosphere and lower crust flow.</p><p>One possible way to reconcile these models is to investigate crustal deformation at multiple depths simultaneously, as well as crust-mantle interaction. Seismic anisotropy is considered as an effective tool to study the geometry and distribution of subsurface deformation, due to its direct connection to the stress state and strain history of anisotropic structures and fabrics. In the eastern margin of Tibetan plateau, previous studies of seismic anisotropy have already provided useful insights into the bulk anisotropic properties of the entire crust or upper mantle, based on shear wave splitting analyses of Moho Ps and XKS phases.</p><p>In this study, we went further to extract anisotropic parameters of multiple crustal layers by waveform inversion of teleseismic receiver function (RF) data from the western-Sichuan temporal seismic array using particle swarm optimization. Instead of directly fitting the backazimuthal stacking of RFs from each station, we translated the RF data into backazimuthal harmonic coefficients using harmonic decomposition technique, which separates the signals (of planar isotropic structure and anisotropy) from the scattering noise generated by non-planar lateral heterogeneity. The constant (k=0) and k=1, 2 terms of backazimuthal harmonic coefficients were used in our inversion. We also fixed the anisotropic model to slow-axis symmetry to avoid ambiguous interpretations.</p><p>Our results show that:</p><p>(1) Anisotropy with a titled anisotropy axis of symmetry is more commonly observed than pure azimuthal anisotropy in our data, which has been also reported by other RF studies across the surrounding areas of Tibetan plateau.</p><p>(2) The trends of slow symmetry axis vary from the upper to lower part of the crust in both Chuandian and Songpan units, indicating the deformation of the upper crust is decoupled from that of the lower crust in these two regions, while the trends are more consistent throughout the crust in the Sichuan basin.</p><p>(3) In the upper crust, the trends show a degree of tendency to lie parallel to the major geological features such as the Xianshuihe and Longmenshan faults, exhibiting a fault-controlled deformation or movement. In the middle and lower crust, the trends are NS or NW-SE in Chuandian unit and NE-SW in Songpan unit, which are coincident with the apparent extension directions of the ductile crustal flow.</p>


Sign in / Sign up

Export Citation Format

Share Document