Dynamics of the extension in the Fonualei Rift in the northern Lau Basin at 16 °S

Author(s):  
Anna Jegen ◽  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Udo Barckhausen ◽  
Ingo Heyde ◽  
...  

<p>The Lau Basin is a young back-arc basin steadily forming at the Indo-Australian-Pacific plate boundary, where the Pacific plate is subducting underneath the Australian plate along the Tonga-Kermadec island arc. Roughly 25 Ma ago, roll-back of the Kermadec-Tonga subduction zone commenced, which lead to break up of the overriding plate and thus the formation of the western Lau Ridge and the eastern Tonga Ridge separated by the emerging Lau Basin.</p><p>As an analogue to the asymmetric roll back of the Pacific plate, the divergence rates decline southwards hence dictating an asymmetric, V-shaped basin opening. Further, the decentralisation of the extensional motion over 11 distinct spreading centres and zones of active rifting has led to the formation of a composite crust formed of a microplate mosaic. A simplified three plate model of the Lau Basin comprises the Tonga plate, the Australian plate and the Niuafo'ou microplate. The northeastern boundary of the Niuafo'ou microplate is given by two overlapping spreading centres (OLSC), the southern tip of the eastern axis of the Mangatolu Triple Junction (MTJ-S) and the northern tip of the Fonualei Rift spreading centre (FRSC) on the eastern side. Slow to ultraslow divergence rates were identified along the FRSC (8-32 mm/a) and slow divergence at the MTJ (27-32 mm/a), both decreasing southwards. However, the manner of divergence has not yet been identified. Additional regional geophysical data are necessary to overcome this gap of knowledge.</p><p>Research vessel RV Sonne (cruise SO267) set out to conduct seismic refraction and wide-angle reflection data along a 185 km long transect crossing the Lau Basin at ~16 °S from the Tonga arc in the east, the overlapping spreading centres, FRSC1 and MTJ-S2, and extending as far as a volcanic ridge in the west. The refraction seismic profile consisted of 30 ocean bottom seismometers. Additionally, 2D MCS reflection seismic data as well as magnetic and gravimetric data were acquired.</p><p>The results of our P-wave traveltime tomography show a crust that varies between 4.5-6 km in thickness. Underneath the OLSC the upper crust is 2-2.5 km thick and the lower crust 2-2.5 km thick. The velocity gradients of the upper and lower crust differ significantly from tomographic models of magmatically dominated oceanic ridges. Compared to such magmatically dominated ridges, our final P-wave velocity model displays a decreased velocity gradient in the upper crust and an increased velocity gradient in the lower crust more comparable to tectonically dominated rifts with a sparse magmatic budget.</p><p>The dominance of crustal stretching in the regional rifting process leads to a tectonical stretching, thus thinning of the crust under the OLSC and therefore increasing the lower crust’s velocity gradient. Due to the limited magmatic budget of the area, neither the magnetic anomaly nor the gravity data indicate a magmatically dominated spreading centre. We conclude that extension in the Lau Basin at the OLSC at 16 °S is dominated by extensional processes with little magmatism, which is supported by the distribution of seismic events concentrated at the northern tip of the FRSC.</p>

2016 ◽  
Vol 46 (4) ◽  
pp. 269-287 ◽  
Author(s):  
Barbora Šimonová ◽  
Miroslav Bielik

Abstract The international seismic project CELEBRATION 2000 brought very good information about the P-wave velocity distribution in the Carpathian-Pannonian Basin litosphere. In this paper seismic data were used for transformations of in situ P-wave velocities to in situ densities along all profiles running across the Western Carpathians and the Pannonian Basin: CEL01, CEL04, CEL05, CEL06, CEL09, CEL11 and CEL12. The calculation of rock densities in the crust and lower lithosphere was done by the transformation of seismic velocities to densities using the formulae of Sobolev-Babeyko, Christensen-Mooney and in the lower lithosphere also by Lachenbruch-Morgan’s formula. The density of the upper crust changes significantly in the vertical and horizontal directions, while the interval ranges of the calculated lower crust densities narrow down prominently. The lower lithosphere is the most homogeneous - the intervals of the calculated densities for this layer are already very narrow. The average density of the upper crust (ρ̅ = 2.60 g · cm−3) is the lowest in the Carpathian Foredeep region. On the contrary, the highest density of this layer (ρ̅ = 2.77 g · cm−3) is located in the Bohemian Massif. The average densities ρ̅ of the lower crust vary between 2.90 and 2.98 g · cm−3. The Palaeozoic Platform and the East European Craton have the highest density (ρ̅ = 2.98 g · cm−3 and ρ̅ = 2.97 g · cm−3, respectively). The lower crust density is the lowest (ρ̅ = 2.90 g · cm−3) in the Pannonian Basin. The range of calculated average densities ρ̅ for the lower lithosphere is changed in the interval from 3.35 to 3.40 g · cm−3. The heaviest lower lithosphere can be observed in the East European Craton (ρ̅ = 3.40 g · cm−3). The lower lithosphere of the Transdanubian Range and the Palaeozoic Platform is characterized by the lowest density ρ̅ = 3.35 g · cm−3.


2020 ◽  
Author(s):  
Florian Schmid ◽  
Heidrun Kopp ◽  
Michael Schnabel ◽  
Anke Dannowski ◽  
Ingo Heyde ◽  
...  

<p>The northeastern Lau Basin is one of the fastest opening and magmatically most active back-arc regions on Earth. Although the current pattern of plate boundaries and motions in this complex mosaic of microplates is fairly well understood, the structure and evolution of the back-arc crust are not. We present refraction seismic, multichannel seismic and gravity data from a 300 km long east-west oriented transect crossing the Niuafo’ou Microplate (back-arc), the Fonualei Rift and Spreading Centre (FRSC) and the Tofua Volcanic Arc at 17°20’S. Our P wave tomography model shows strong lateral variations in the thickness and velocity-depth distribution of the crust. The thinnest crust is present in the Fonualei Rift and Spreading Center, suggesting active seafloor spreading there. In the much thicker crust of the volcanic arc we identify a region of anomalously low velocities, indicative of partial melts. Surprisingly, the melt reservoir is located at ~17 km distance to the volcanic front, supporting the hypothesis that melts are deviated from the volcanic arc towards the FRSC in sub-crustal domains. We identify two distinct regions in the back-arc crust, representing different opening phases of the northeastern Lau Basin. During initial extension, likely dominated by rifting, crust of generally lower upper-crustal velocities formed. During an advanced opening phase, likely dominated by seafloor spreading, crust of higher upper-crustal velocities formed and is now up to 11 km thick. This thickening is the result of magmatic underplating, which is supported by elevated upper mantle temperatures in this region.</p>


Author(s):  
Wen Yang ◽  
Zhifeng Ding ◽  
Jie Liu ◽  
Jia Cheng ◽  
Xuemei Zhang ◽  
...  

ABSTRACT The 2017 Mw 6.5 Jiuzhaigou mainshock hit the northeastern end of the Bayan Har block, which has experienced many historical earthquakes, including the 1976 M 7.2 Songpan-Pingwu earthquake swarm. We used the double-difference tomography method to perform a joint inversion of the seismic source and P-wave velocity (VP) structure of the Jiuzhaigou-Songpan-Pingwu region. The results show significant lateral heterogeneity in the VP in the mid-upper crust. The velocity structure in the shallow crust correlates well with the surface geology. The Jiuzhaigou mainshock and Songpan-Pingwu earthquake swarm both occurred at the boundary between high- and low-VP anomalies. The Songpan-Pingwu earthquake swarm may be related to the eastward flow of low-viscosity material in the mid-lower crust of the Tibetan plateau. Low-viscosity material intrudes into the bedrock when it encounters the rigid Motianling massif, resulting in surface uplift and thrust earthquakes. By contrast, the Jiuzhaigou earthquake is associated with strain energy accumulating at the boundary between high- and low-VP anomalies related to the different movement rates of the low-VP material in the mid-lower crust and the high-VP body in the mid-upper crust. In this case, the high-VP body ruptures with a strike-slip sense to the southeast.


1994 ◽  
Vol 31 (12) ◽  
pp. 1806-1821 ◽  
Author(s):  
Maurice Recq ◽  
Isabelle Le Roy ◽  
Philippe Charvis ◽  
Jean Goslin ◽  
Daniel Brefort

Mont Ross is the main volcanic feature of the Kerguelen Archipelago (terres Australes et Antarctiques françaises). This newly formed volcano buildup over 2 Ma provides us with an outstanding model of volcanism occurring on an intraplate structure already aged 40 Ma. Mont Ross is the subaerial part of a plutonic complex located in Galliéni Peninsula. From seismic refraction studies, P-wave velocities within the upper crust range downward from 5.35 km/s at sea level to 6.60 km/s at a depth of 11 km. These are definitely higher than those encountered within surrounding basalts known as plateau basalts. These high velocities reveal, at first glance, an origin and composition of the basement of Mont Ross far distinct from those of tholeiitic or transitional lava flows generated near spreading centres. By comparison with plutonic ring complexes, it is reasonable to state that monzonite and syenite are the basic materials of the basement. Seismic velocities (6.85 to 7.30–7.35 km/s) and related Poisson ratio (σ = 0.30) within lower crust are consistent with gabbros as prominent material. The thickness of the lower crust below Mont Ross (6–7 km) is roughly the same as that below the archipelago. Gabbros are exposed around several plutonic ring complexes spread over the archipelago. The transition to mantle might be modelled by a 2 km thick transition zone, with high velocity gradient, already noticed below the archipelago. Velocities of 7.30–7.35 km/s at the base of the crust below Mont Ross do not preclude contamination of the lower crust by mantle material. Both gravity and seismic data substantiate the occurrence of high density (velocity) within the upper crust below Mont Ross. Isostatic compensation of Mont Ross is rather achieved by a flexural deflection of the lithosphere than by an Airy-type model. The structures of Mont Ross and Hawaiian volcanoes bear analogies likely related to their intraplate genesis.


2019 ◽  
Vol 109 (6) ◽  
pp. 2288-2304 ◽  
Author(s):  
Shuai Zhao ◽  
Wenbin Guo

Abstract We present the results from an onshore seismic refraction and wide‐angle reflection profile, conducted in 2015, across the coastal plain and eastern Piedmont provinces of North Carolina. We use forward modeling to create 1D synthetic seismogram models and then invert first break picks to create 2D P‐ and S‐wave velocity models. The crustal thickness is 38 km beneath the Piedmont and central coastal plain, but it thins to 32 km at the coastline. The average thickness of the upper crust is 11 km with an average P‐wave velocity (VP) of 6.0  km/s and S‐wave velocity (VS) of 3.5  km/s. A prominent seismic low‐velocity zone (LVZ) (VP<6.0 and VS<3.6  km/s) exists between the depths of 6 and 11 km, beneath the western third of the seismic profile. The middle crust varies greatly in thickness, increasing from 3 km in the west (eastern Piedmont) to 13 km in the east (coastal plain), with seismic velocities of 6.5  km/s for VP and 3.8  km/s for VS. The lower crust thins significantly toward the rifted Atlantic margin, decreasing from 24 km thick in the west (Piedmont) to 8 km at the coastline, with velocities of approximately 6.9  km/s for VP and 3.9  km/s for VS. We estimate the composition of the crust by comparing the measured values of VP and Poisson’s ratio with laboratory measurements. The upper and middle crusts are in agreement with a felsic composition, while the lower crustal composition is predominately felsic to intermediate. The LVZ in the upper crust is associated with thin layers of the mylonitic rocks involved in the top and the bottom of thrusting, and the top of the lower crust could be the master detachment fault during the thin‐skinned Alleghanian orogeny. The eastward thinning of the lower crust is consistent with crustal extension during the Mesozoic rifting of the Atlantic margin.


2001 ◽  
Vol 38 (10) ◽  
pp. 1463-1478 ◽  
Author(s):  
Thomas Funck ◽  
Keith E Louden ◽  
Ian D Reid

The crustal structure of the eastern Grenville and Makkovik provinces was determined using two onshore–offshore refraction seismic lines of the Lithoprobe Eastern Canadian Shield Onshore–Offshore Transect (ECSOOT). A gravity high in the Hawke River terrane correlates with increased P-wave velocities in the upper 30 km of the crust (6.2–6.7 km/s in the upper and middle crust and 6.9–7.1 km/s below) which we interpret as structure inherited from the Labradorian orogen. Velocities in the adjacent Groswater Bay terrane are 6.0–6.55 km/s in the upper and middle crust and 6.6–6.95 km/s in the lower crust. The entire Grenville crust is underlain by a 15–20 km thick high-velocity lower crustal (HVLC) wedge consisting of an upper layer (7.1–7.4 km/s) and a lower layer (7.6–7.8 km/s). The HVLC wedge is interpreted as an underplated layer formed during Iapetan rifting. This interpretation is based on the correlation with the 615 Ma Long Range dykes onshore and the eastward termination of the wedge at the Cartwright Arch. Similar HVLC layers are found offshore western Newfoundland, suggesting that the underplating may be a continuous feature along the passive Grenvillian margin. The Cartwright Arch is characterized by velocities of 6.4 km/s and 4 km thick sediment sequences (4.3–5.7 km/s) in the surrounding basin, interpreted as an extensional basin with basaltic magmatism within the arch. The Grenville front is clearly marked by a decrease of velocities in the Makkovik Province (5.8–6.4 km/s in the upper and middle crust, 6.65–6.85 km/s in the lower crust) and a gradual thickening of the crust (not including the HVLC layer) from 30 km in the Grenville Province to 35 km in the Makkovik Province.


2016 ◽  
Vol 1 (01) ◽  
pp. 84
Author(s):  
Dwi Wahyu Anggraeni ◽  
Erno Widayanto ◽  
Dwi Nurtanto

AbstractMost of Indonesia area is an earthquake- prone region. This is caused by the confluence of three major plates world that are subduction. Indo-Australian Plate colliding with the Eurasian plate off the coast of Sumatra, Java and Nusa Tenggara, while the Pacific plate in northern Guinea and North Maluku. In the vicinity of the meeting location this plate collision energy accumulated in the form of earthquake. The quake destroyed much of the multi-storey buildings that do not have adequate strength. Therefore , the higher the building, the greater the effects of the earthquake were received by the building. One way to acquire resistance to earthquake response was to add rigidity to a building. How to obtain the stiffness of a building is to install bracing for high-rise buildings. The purpose of this analysis was conducted to determine usage behavior particularly bracing displacement. The Results of this analysis showed a reduction in horizontal deviation of the building due to the addition of frame bracing. The difference in the percentage of horizontal deviation without bresing building and building using bresing X is 82.519%. While the difference in the percentage of horizontal deviation without order bresing building and building using bresing V is 64.904%.Keywords: pushover analysis , bracing, displacement,earthquake AbstrakSebagian besar wilayah Indonesia merupakan wilayah rawan gempa. Hal ini disebabkan oleh pertemuan tiga lempeng utama dunia yang bersifat subdaksi. Lempeng Indo- Australia bertabrakan dengan lempeng Eurasia di lepas pantai Sumatra, Jawa dan Nusa Tenggara, sedangkan lempeng Pasific di utara Irian dan Maluku Utara. Di sekitar lokasi pertemuan lempeng ini akumulasi energi tabrakan terkumpul sehingga lepas berupa gempa bumi. Gempa banyak menghancurkan bangunan- bangunan bertingkat yang tidak mempunyai kekuatan yang memadai. Oleh karena itu, semakin tinggi bangunan maka semakin besar pula efek gempa yang diterima oleh bangunan tersebut. Salah satu cara untuk memperoleh ketahanan terhadap respon gempa adalah menambah kekakuan pada suatu bangunan. Cara memperoleh kekakuan suatu bangunan adalah dengan memasang pengekang (bracing) untuk bangunan tinggi. Tujuan dari analisa ini dilakukan untuk mengetahui perilaku pemakaian bracing khususnya displacement. Hasil dari analisa ini menunjukkan terjadinya pengurangan simpangan horizontal gedung karena adanya penambahan rangka bracing. Selisih presentase simpangan horizontal gedung tanpa bresing dan gedung dengan menggunakan bresing X adalah 82,519%. Sedangkan selisih presentase simpangan horizontal gedung tanpa rangka bresing dan gedung dengan menggunakan bresing V adalah 64,904%.Kata kunci: analisa pushover , bracing, displacement, gempa


2017 ◽  
Author(s):  
Vasileios Chatzaras ◽  
◽  
Thomas van der Werf ◽  
Leo M. Kriegsman ◽  
Andreas K. Kronenberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document