Empirical Correlations of Spectral Input Energy with Peak Amplitude, Cumulative, and Duration Intensity Measures

Author(s):  
Yin Cheng ◽  
Tongtong Liu ◽  
Jianfeng Wang ◽  
Chao-Lie Ning

ABSTRACT In earthquake engineering, it is acknowledged that a vector of intensity measures (IMs) can better predict seismic structural responses than a single measure. Hence, a vector of IMs is widely applied in a number of applications, such as probabilistic seismic hazard analysis, probabilistic seismic risk analysis, and ground-motion selections. Spectral input energy (EI) has been demonstrated as a promising IM in earthquake engineering, especially in the energy-based seismic design of structures. However, this important measure has not been included in the vector of IMs. Therefore, it is worthwhile to incorporate EI with other important IMs by examining correlations. This study analyzes the empirical correlations of spectral EI with peak amplitude-based IMs, cumulative-based IMs, and duration-related IMs. It is found that spectral absolute EI has strong correlations with peak ground velocity at all investigated periods. However, spectral EI is negatively correlated with duration-based IMs. To demonstrate the applicability of the examined correlations, a simple example is finally presented by employing EI for the ground-motion selections and seismic hazard assessment based on the generalized conditional intensity measure approach.

2010 ◽  
Vol 5 (4) ◽  
pp. 407-416
Author(s):  
Sei’ichiro Fukushima ◽  

Seismic risk analysis usually expresses ground-motion intensity using a single index such as peak ground acceleration (PGA), spectral acceleration for a specified period, or peak ground velocity (PGV). Limiting the number of indices, however, adds greater uncertainty when estimating annual failure probability given by convolving seismic hazard and fragility curves. This is because information other than ground-motion intensity is missing. Author proposed seismic hazard analysis using PGA and PGV simultaneously as groundmotion input measures. After analyzing the correlation coefficient between PGA and PGV using K-NET and KiK-net databases, probabilistic seismic hazard for seven sites in Kanto district in Japan was evaluated. In this study, seismic fragility analysis using PGA and PGV is conducted followed by advantage of vector-valued fragility analysis.


2021 ◽  
pp. 875529302098802
Author(s):  
Ryan Schultz ◽  
Vince Quitoriano ◽  
David J Wald ◽  
Gregory C Beroza

Hazards from induced earthquakes are a growing concern with a need for effective management. One aspect of that concern is the “nuisance” from unexpected ground motions, which have the potential to cause public alarm and discontent. In this article, we borrow earthquake engineering concepts to quantify the chance of building damage states and adapt them to quantify felt thresholds for induced earthquakes in the Central and Eastern United States. We compare binary data of felt or not-felt reports from the “Did You Feel It” database with ShakeMap ground motion intensity measures (IM) for ∼360 earthquakes. We use a Monte Carlo logistic regression to discern the likelihood of perceiving various degrees of felt intensity, given a particular IM. These best-fit nuisance functions are reported in this article and are readily transferable. Of the shaking types considered, we find that peak ground velocity tends to be the best predictor of a felt earthquake. We also find that felt thresholds tended to decrease with increasing earthquake magnitude, after M ∼3.9. We interpret this effect as related to the duration of the event, where events smaller than M 3.9 are perceived as “impulsive” to the human senses. Improved quantification of the nuisance from induced earthquake ground motions could be utilized in management of the public perception of their causal operations. Although aimed at anthropogenic earthquakes, thresholds we derive could be useful in other realms, such as establishing best practices and protocols for earthquake early warning.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenming Wang ◽  
David T. Butler ◽  
Edward W. Woolery ◽  
Lanmin Wang

A scenario seismic hazard analysis was performed for the city of Tianshui. The scenario hazard analysis utilized the best available geologic and seismological information as well as composite source model (i.e., ground motion simulation) to derive ground motion hazards in terms of acceleration time histories, peak values (e.g., peak ground acceleration and peak ground velocity), and response spectra. This study confirms that Tianshui is facing significant seismic hazard, and certain mitigation measures, such as better seismic design for buildings and other structures, should be developed and implemented. This study shows that PGA of 0.3 g (equivalent to Chinese intensity VIII) should be considered for seismic design of general building and PGA of 0.4 g (equivalent to Chinese intensity IX) for seismic design of critical facility in Tianshui.


Author(s):  
Hoang Nam Phan ◽  
Fabrizio Paolacci

Liquid storage tanks are vital lifeline structures and have been widely used in industries and nuclear power plants. In performance-based earthquake engineering, the assessment of probabilistic seismic risk of structural components at a site is significantly affected by the choice of ground motion intensity measures (IMs). However, at present there is no specific widely accepted procedure to evaluate the efficiency of IMs used in assessing the seismic performance of steel storage tanks. The study presented herein concerns the probabilistic seismic analysis of anchored above-ground steel storage tanks subjected to several sets of ground motion records. The engineering demand parameters for the analysis are the compressive meridional stress in the tank wall and the sloshing wave height of the liquid free surface. The efficiency and sufficiency of each alternative IM are quantified by results of time history analyses for the structural response and a proper regression analysis. According to the comparative study results, this paper proposes the most efficient and sufficient IMs with respect to the above demand parameters for a portfolio of anchored steel storage tanks.


2018 ◽  
Vol 34 (2) ◽  
pp. 587-610 ◽  
Author(s):  
Karim Tarbali ◽  
Brendon A. Bradley ◽  
Jack W. Baker

This paper investigates various approaches to propagate the effect of epistemic uncertainty in seismic hazard and ground motion selection to seismic performance metrics. Specifically, three approaches with different levels of rigor are presented for establishing the conditional distribution of intensity measures considered for ground motion selection, selecting ground motion ensembles, and performing nonlinear response history analyses (RHAs) to probabilistically characterize seismic response. The mean and distribution of the seismic demand hazard is used as the principal means to compare the various results. An example application illustrates that, for seismic demand levels significantly below the collapse limit, epistemic uncertainty in seismic response resulting from ground motion selection can generally be considered as small relative to the uncertainty in the seismic hazard itself. In contrast, uncertainty resulting from ground motion selection appreciably increases the uncertainty in the seismic demand hazard for near-collapse demand levels.


2020 ◽  
pp. 875529302095244
Author(s):  
Wenqi Du ◽  
Chao-Lie Ning

Ground motion intensity measures (IMs) were observed to be spatially correlated during past earthquakes. In this article, a new spatial cross-correlation model for a vector-IM, which consists of spectral acceleration (SA) ordinates at 17 periods and six non-SA IMs (e.g. peak ground velocity, Arias intensity, cumulative absolute velocity, and significant durations), is proposed using principal component analysis (PCA) and geostatistical analysis. A total of 3797 ground motion records are selected from the NGA-West2 database for such analyses. PCA is used to transform the spatially correlated within-event residuals into uncorrelated principal components; a permissible function is then proposed to fit the empirical semivariograms calculated by the principal components. It is evident that the proposed model performs well in capturing the spatial variability characteristics of the multiple ground motion IMs. A simple example is presented to illustrate the use of the proposed model in realizing spatially correlated ground motion residuals of multiple IMs. The model developed enables one to simulate spatially cross-correlated IMs over a large area in a rapid way.


Author(s):  
Kun Ji ◽  
Yefei Ren ◽  
Ruizhi Wen

ABSTRACT This study used earthquake records from China to investigate comprehensively the correlation coefficients between various intensity measures (IMs), including peak ground acceleration, peak ground velocity, spectral acceleration, spectrum intensity, acceleration spectrum intensity, Arias intensity, cumulative absolute velocity, and significant duration. After collection of metadata information, 681 three-component ground-motion recordings with magnitudes of Mw 4.9–6.9 were carefully processed and extracted from the China National Strong-Motion Observation Network System dataset (2007–2015). The applicability of both the Next Generation Attenuation (NGA)-West2 ground-motion model (GMM) and of other GMMs was verified for different IMs, regarding the China dataset. Then, empirical correlation coefficients between different IMs were computed, considering the uncertainty due to the different sample sizes of the observational data using the bootstrap sampling method and Fisher z transformation. Finally, the median values of the correlation coefficients were fitted as a continuous function of the vibration period in the range of 0.01–10.0 s and compared with the results of similar studies developed for shallow crustal regions worldwide. The developed region-specific correlation coefficient prediction model yielded tendencies approximately like those reported in other studies. However, obvious differences were found in long-period ranges of amplitude-based IMs, cumulative effect IMs, and significant duration. These results suggest the necessity of using region-specific correlation coefficients for generalized IMs in China. The presented results and parametric models could be easily implemented in a generalized IM ground-motion selection method or a vector-based probability seismic hazard analysis procedure for China.


2016 ◽  
Vol 32 (4) ◽  
pp. 2549-2566 ◽  
Author(s):  
Nicolas Bastías ◽  
Gonzalo A. Montalva

The Nazca-South American plate boundary produces large-magnitude events (Mw > 8) every 20 years on the coast of Chile. This work describes a public ground motion database that contains 3,572 records from 477 earthquakes and 181 seismic stations, which includes the recent 2015 Mw 8.3 Illapel earthquake. The data set is controlled by subduction interface and inslab events. The oldest event included is Valparaiso (1985), and the magnitude span is 4.6–8.8 Mw. The source-to-site distance metrics reported are the closest distance to the rupture plane ( R rup), epicentral ( R epi) and hypocentral ( R hyp) distances, with a range for R rup from 20 to 650 km. Site characterization is based on V S30, ranging from 110 to 1,951 m/s. Intensity measures included are peak ground acceleration, spectral acceleration values from 0.01 to 10 s, Arias intensity, and peak ground velocity. Each record was uniformly processed component by component. A flatfile with the related metadata and the spectral accelerations from processed ground motions is available at NEEShub ( http://doi.org/10.17603/DS2N30J ; Bastías and Montalva 2015 ).


Author(s):  
Duofa Ji ◽  
Chenxi Li ◽  
Changhai Zhai ◽  
You Dong ◽  
Evangelos I. Katsanos ◽  
...  

ABSTRACT One of the key elements within seismic hazard analysis is the establishment of appropriate ground-motion models (GMMs), which are used to predict the levels of ground-motion intensities by considering various parameters (e.g., source, path, and site). Many empirical GMMs were derived on the basis of a predefined linear or nonlinear equation that is heavily dependent on the a priori knowledge of a functional form that varies between the modelers’ choices. To overcome this issue, this study develops a deep neural network (DNN) trained by the recordings from the Pacific Earthquake Engineering Research Center (PEER) Next Generation Attenuation-West2 Project (NGA-West2) database. To this end, we collected 20,900 ground motion recordings from the database and randomly split them into the training, validation, and testing datasets. The refined second-order neuron is proposed to solve the problem, and the Adam optimizer is used to optimize the performance of the model. The prediction errors are evaluated by three performance indicators (i.e., R2, root mean square error, mean absolute error), and the predictive results are compared with previous GMMs developed based on the PEER NGA-West2 database. The between-event and within-event standard deviations (SDs) as well as total SDs are calculated and compared. Based on the comparisons, our model maintains consistent performance (e.g., the dependence of predicted intensity measures on seismological and site-specific parameters) with the compared GMM. Its relatively small total SDs, especially for longer periods, confirm that the proposed model is associated with better predictive power.


2012 ◽  
Vol 28 (1) ◽  
pp. 37-54 ◽  
Author(s):  
Brendon A. Bradley

Empirical correlation equations are developed between cumulative absolute velocity ( CAV) and other common ground motion intensity measures, namely, peak ground acceleration ( PGA), peak ground velocity ( PGV), 5% damped pseudo spectral acceleration ( SA), acceleration spectrum intensity ( ASI), spectrum intensity ( SI), and displacement spectrum intensity ( DSI). It is found that, for a given earthquake rupture, CAV has the strongest correlation with high and moderate frequency intensity measures (IMs), that is, ASI, PGA, PGV and high-frequency SA, and to a lesser extent with low frequency IMs ( DSI and low-frequency SA). The largest positive correlations of approximately 0.7 however are not high in an absolute sense, a result of the cumulative nature of CAV. The equations allow estimation of the joint distribution of these intensity measures for a given earthquake rupture, enabling the inclusion of CAV, and its benefit as a cumulative intensity measure, in seismic hazard analysis, ground motion selection, and seismic response analysis.


Sign in / Sign up

Export Citation Format

Share Document