Correspondence between Site Amplification and Topographical, Geological Parameters: Collation of Data from Swiss and Japanese Stations, and Neural Networks-Based Prediction of Local Response

Author(s):  
Paolo Bergamo ◽  
Conny Hammer ◽  
Donat Fäh

ABSTRACT We address the relation between seismic local amplification and topographical and geological indicators describing the site morphology. We focus on parameters that can be derived from layers of diffuse information (e.g., digital elevation models, geological maps) and do not require in situ surveys; we term these parameters as “indirect” proxies, as opposed to “direct” indicators (e.g., f0, VS30) derived from field measurements. We first compiled an extensive database of indirect parameters covering 142 and 637 instrumented sites in Switzerland and Japan, respectively; we collected topographical indicators at various spatial extents and focused on shared features in the geological descriptions of the two countries. We paired this proxy database with a companion dataset of site amplification factors at 10 frequencies within 0.5–20 Hz, empirically measured at the same Swiss and Japanese stations. We then assessed the robustness of the correlation between individual site-condition indicators and local response by means of statistical analyses; we also compared the proxy-site amplification relations at Swiss versus Japanese sites. Finally, we tested the prediction of site amplification by feeding ensembles of indirect parameters to a neural network (NN) structure. The main results are: (1) indirect indicators show higher correlation with site amplification in the low-frequency range (0.5–3.33 Hz); (2) topographical parameters primarily relate to local response not because of topographical amplification effects but because topographical features correspond to the properties of the subsurface, hence to stratigraphic amplification; (3) large-scale topographical indicators relate to low-frequency response, smaller-scale to higher-frequency response; (4) site amplification versus indirect proxy relations show a more marked regional variability when compared with direct indicators; and (5) the NN-based prediction of site response is the best achieved in the 1.67–5 Hz band, with both geological and topographical proxies provided as input; topographical indicators alone perform better than geological parameters.

2021 ◽  
pp. 875529302098802
Author(s):  
Chuanbin Zhu ◽  
Graeme Weatherill ◽  
Fabrice Cotton ◽  
Marco Pilz ◽  
Dong Youp Kwak ◽  
...  

This article describes an open-source site database for a total number of 1742 earthquake recording sites in the K-NET (Kyoshin network) and KiK-net (Kiban Kyoshin network) networks in Japan. This database contains site characterization parameters directly derived from available velocity profiles, including average wave velocities, bedrock depths, and velocity contrast. Meanwhile, it also consists of earthquake horizontal-to-vertical spectral ratio (HVSR) and peak parameters, for example, peak frequency, amplitude, width, and prominence. In addition, the site database also comprises topographic and geological proxies inferred from regional models or maps. Each parameter is derived in a consistent manner for all sites. This site database can benefit the application of machine learning techniques in studies on site amplification. Besides, it can facilitate, for instances, the search of the optimal site parameter(s) for the prediction of site amplification, the development and testing of ground-motion models or methodologies, as well as investigations on spatial or regional variability in site response. All resources (the site database, earthquake HVSR data at all sites, and the MATLAB script for peak identification) can be freely accessed via: https://doi.org/10.5880/GFZ.2.1.2020.006


2019 ◽  
Vol 35 (2) ◽  
pp. 787-814 ◽  
Author(s):  
Joseph Harmon ◽  
Youssef M. A. Hashash ◽  
Jonathan P. Stewart ◽  
Ellen M. Rathje ◽  
Kenneth W. Campbell ◽  
...  

This paper presents the development of large-scale simulation-based data sets used to inform new site amplification models for Central and Eastern North America (CENA). Linear elastic, equivalent linear, and nonlinear one-dimensional site response simulations of site conditions in CENA are employed. An analysis tree is introduced to capture the range of expected CENA geologic conditions. Independent variables include the following: (1) representative and random shear wave velocity ( VS) profiles using data from the literature; (2) randomized, nonlinear shear modulus reduction and damping vs. shear strain curves with constraint on soil shear strength; and (3) outcrop ground motions representative of the VS = 3,000 m/s CENA reference rock condition. The resulting database of 1,747,278 simulations is conditioned on several parameters relevant to site amplification, which facilitates model development that is the subject of a companion paper. The database is openly available for use by other researchers.


2021 ◽  
Vol 498 ◽  
pp. 115940
Author(s):  
Prashant Kumar ◽  
Rammohan Sriramdas ◽  
Ali E. Aliev ◽  
John B. Blottman ◽  
Nathanael K. Mayo ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


2021 ◽  
pp. 875529302098198
Author(s):  
Muhammad Aaqib ◽  
Duhee Park ◽  
Muhammad Bilal Adeel ◽  
Youssef M A Hashash ◽  
Okan Ilhan

A new simulation-based site amplification model for shallow sites with thickness less than 30 m in Korea is developed. The site amplification model consists of linear and nonlinear components that are developed from one-dimensional linear and nonlinear site response analyses. A suite of measured shear wave velocity profiles is used to develop corresponding randomized profiles. A VS30 scaled linear amplification model and a model dependent on both VS30 and site period are developed. The proposed linear models compare well with the amplification equations developed for the western United States (WUS) at short periods but show a distinct curved bump between 0.1 and 0.5 s that corresponds to the range of site natural periods of shallow sites. The response at periods longer than 0.5 s is demonstrated to be lower than those of the WUS models. The functional form widely used in both WUS and central and eastern North America (CENA), for the nonlinear component of the site amplification model, is employed in this study. The slope of the proposed nonlinear component with respect to the input motion intensity is demonstrated to be higher than those of both the WUS and CENA models, particularly for soft sites with VS30 < 300 m/s and at periods shorter than 0.2 s. The nonlinear component deviates from the models for generic sites even at low ground motion intensities. The comparisons highlight the uniqueness of the amplification characteristics of shallow sites that a generic site amplification model is unable to capture.


2021 ◽  
Vol 13 (16) ◽  
pp. 3062
Author(s):  
Guo Zhang ◽  
Boyang Jiang ◽  
Taoyang Wang ◽  
Yuanxin Ye ◽  
Xin Li

To ensure the accuracy of large-scale optical stereo image bundle block adjustment, it is necessary to provide well-distributed ground control points (GCPs) with high accuracy. However, it is difficult to acquire control points through field measurements outside the country. Considering the high planimetric accuracy of spaceborne synthetic aperture radar (SAR) images and the high elevation accuracy of satellite-based laser altimetry data, this paper proposes an adjustment method that combines both as control sources, which can be independent from GCPs. Firstly, the SAR digital orthophoto map (DOM)-based planar control points (PCPs) acquisition is realized by multimodal matching, then the laser altimetry data are filtered to obtain laser altimetry points (LAPs), and finally the optical stereo images’ combined adjustment is conducted. The experimental results of Ziyuan-3 (ZY-3) images prove that this method can achieve an accuracy of 7 m in plane and 3 m in elevation after adjustment without relying on GCPs, which lays the technical foundation for a global-scale satellite image process.


2021 ◽  
Vol 13 (2) ◽  
pp. 320
Author(s):  
José P. Granadeiro ◽  
João Belo ◽  
Mohamed Henriques ◽  
João Catalão ◽  
Teresa Catry

Intertidal areas provide key ecosystem services but are declining worldwide. Digital elevation models (DEMs) are important tools to monitor the evolution of such areas. In this study, we aim at (i) estimating the intertidal topography based on an established pixel-wise algorithm, from Sentinel-2 MultiSpectral Instrument scenes, (ii) implementing a set of procedures to improve the quality of such estimation, and (iii) estimating the exposure period of the intertidal area of the Bijagós Archipelago, Guinea-Bissau. We first propose a four-parameter logistic regression to estimate intertidal topography. Afterwards, we develop a novel method to estimate tide-stage lags in the area covered by a Sentinel-2 scene to correct for geographical bias in topographic estimation resulting from differences in water height within each image. Our method searches for the minimum differences in height estimates obtained from rising and ebbing tides separately, enabling the estimation of cotidal lines. Tidal-stage differences estimated closely matched those published by official authorities. We re-estimated pixel heights from which we produced a model of intertidal exposure period. We obtained a high correlation between predicted and in-situ measurements of exposure period. We highlight the importance of remote sensing to deliver large-scale intertidal DEM and tide-stage data, with relevance for coastal safety, ecology and biodiversity conservation.


Sign in / Sign up

Export Citation Format

Share Document