Shallow Faults Reactivated by Hydraulic Fracturing: The 2019 Weiyuan Earthquake Sequences in Sichuan, China

2020 ◽  
Vol 91 (6) ◽  
pp. 3171-3181 ◽  
Author(s):  
Maomao Wang ◽  
Hongfeng Yang ◽  
Lihua Fang ◽  
Libo Han ◽  
Dong Jia ◽  
...  

Abstract Human activity-induced earthquakes are emerging as a global issue, and revealing its underlying mechanisms is essential for earthquake hazard mitigation and energy development. We investigated the relationship between the seismotectonic model and seismic sequences from moderate Mw 4.3 and Mw 5.2 earthquakes that occurred in February and September 2019, respectively, in the Weiyuan anticline of Sichuan basin, China. We found that the Mw 5.2 earthquake ruptured a back thrust of structural wedges and released most aftershocks near the wedge tip. However, the two foreshocks of the Mw 4.3 earthquake sequence occurred in hydrofractured Silurian shale at depth of 2.5–3 km, and the mainshock ruptured the overlying oblique tear fault at a depth of ∼1  km. Hydraulic fracturing in the sedimentary cover of this block may induce earthquakes through fluid pressure diffusion in the Silurian shale and through poroelastic effects on back thrusts within structural wedges, respectively. We assessed the hazard potential of four seismic sources in the Weiyuan block and suggest it is critical to conduct a coupled flow-geomechanics assessment and management on induced seismicity and related cascading effects in the densely inhabited and seismically active Sichuan basin.

2018 ◽  
Vol 115 (8) ◽  
pp. E1720-E1729 ◽  
Author(s):  
Maria Kozłowska ◽  
Michael R. Brudzinski ◽  
Paul Friberg ◽  
Robert J. Skoumal ◽  
Nicholas D. Baxter ◽  
...  

Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values < 1, and many post–shut-in earthquakes, versus (ii) shallower earthquakes in Paleozoic rocks ∼400 m below HF, with smaller magnitudes (M < 1), b-values > 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3451 ◽  
Author(s):  
Zuxun Zhang ◽  
Hongtu Wang ◽  
Bozhi Deng ◽  
Minghui Li ◽  
Dongming Zhang

Hydraulic fracturing is an effective technology for enhancing the extraction of reservoir methane, as proved by field experience and laboratory experiments. However, unlike conventional reservoirs, coal seams had high stress sensitivity and high anisotropy. Therefore, the efficiency of hydraulic fracturing in coal seams needs to be investigated. In this study, hydraulic fracturing was performed at Nantong mine in the southeast Sichuan basin, China. The field investigation indicated that the hydraulic fracturing could significantly enhance the methane extraction rate of boreholes ten times higher than that of normal boreholes in one of the minable coal seams (named #5 coal seam). The performance of hydraulic fracturing in three districts revealed that compared with south flank, the fluid pressure was higher and the injection rate was lower in north flank. The methane extraction rate of south flank was inferior to that of north flank. It indicated hydraulic fracturing had less effect on #5 coal seam in south flank. Moreover, the injection of high-pressure water in coal seams could also drive methane away from boreholes. The methane extraction rate of the test boreholes demonstrated the existence of methane enrichment circles after hydraulic fracturing. It indicated that hydraulic fracturing did act on #5 coal seam in south flank. However, due to the high stress sensitivity of coal seams and the high geo-stress of south flank, the induced artificial fractures in #5 coal seam might close with the decline of the fluid pressure that led to a sharp decline of the methane extraction rate.


Author(s):  
Renqi Lu ◽  
Dengfa He ◽  
Jing-Zeng Liu ◽  
Wei Tao ◽  
Hanyu Huang ◽  
...  

Abstract The seismicity rate in the southwestern Sichuan basin, China, dramatically increased after 2014. The associated moderate earthquakes may have been induced by salt mining or shale gas exploration. The location of the seismogenic faults causing these moderate earthquakes has not been confirmed, resulting in a lack of understanding of the earthquake mechanisms in the study area. The detailed structural characteristics of pre-existing faults, which are typically responsible for induced seismicity, are unclear. In this study, we used high-resolution seismic reflection profiles in conjunction with geological, seismologic, and geodetic data to reveal the 3D distributions of the seismogenic faults. Basement thrust faults in the Changning anticline were identified using seismic interpretations and are associated with the 2019 Changning earthquake sequence. The geometry and location of these pre-existing faults are consistent with previous studies of the seismology and structural geology in the area. The well-developed pre-existing fault system in the sedimentary cover and basement makes the Changning area vulnerable to induced earthquakes. Present-day reactivation of the basement fault system reveals the unstable state of the local tectonic stress field. It is possible that the potential seismic risk in this region could be increased by industrial activity in the southwestern Sichuan basin.


2021 ◽  
Author(s):  
Rebecca O. Salvage ◽  
David W. Eaton

&lt;p&gt;The global pandemic of COVID-19 furnished an opportunity to study seismicity in the Kiskatinaw area of British Columbia, noted for hydraulic-fracturing induced seismicity, during a period of anthropogenic quiescence. A total of 389 events were detected from April to August 2020, encompassing a period with no hydraulic-fracturing operations during a government-imposed lockdown. During this time period, observed seismicity had a maximum magnitude of M&lt;sub&gt;L&lt;/sub&gt; 1.2 and lacked temporal clustering that is often characteristic of hydraulic-fracturing induced sequences. Instead, seismicity was persistent over the lockdown period, similar to swarm-like seismicity with no apparent foreshock-aftershock type sequences. Hypocenters occurred within a corridor orientated NW-SE, just as seismicity had done in previous years in the area, with focal depths near the target Montney formation or shallower (&lt;2.5 km). Based on the Gutenberg-Richter relationship, we estimate that a maximum of 21% of the detected events during lockdown may be attributable to natural seismicity, with a further 8% possibly due to dynamic triggering of seismicity from teleseismic events. The remaining ~70% cannot be attributed to direct pore pressure increases induced by fluid injection, and therefore is inferred to represent latent seismicity i.e. seismicity that occurs after an unusually long delay following primary activation processes, with no obvious triggering mechanism. We can exclude pore-pressure diffusion from the most recent fluid injection, as is there is no clear pattern of temporal or spatial seismicity migration. If elevated pore pressure from previous injections became trapped in the subsurface, this could explain the localization of seismicity within an operational corridor, but it does not explain the latency of seismicity on a timescale of months. However, aseismic creep on weak surfaces such as faults, in response to tectonic stresses, in addition to trapped elevation pore-pressure could play a role in stress re-loading to sustain the observed pattern of seismicity.&lt;/p&gt;


2019 ◽  
Author(s):  
Sergey Turuntaev ◽  
Evgeny Zenchenko ◽  
Maria Trimonova ◽  
Petr Zenchenko ◽  
Nikolay Baryshnikov ◽  
...  

2018 ◽  
Vol 630 ◽  
pp. 349-356 ◽  
Author(s):  
Caineng Zou ◽  
Yunyan Ni ◽  
Jian Li ◽  
Andrew Kondash ◽  
Rachel Coyte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document