Seismogenic Faults of the Changning Earthquake Sequence Constrained by High-Resolution Seismic Profiles in the Southwestern Sichuan Basin, China

Author(s):  
Renqi Lu ◽  
Dengfa He ◽  
Jing-Zeng Liu ◽  
Wei Tao ◽  
Hanyu Huang ◽  
...  

Abstract The seismicity rate in the southwestern Sichuan basin, China, dramatically increased after 2014. The associated moderate earthquakes may have been induced by salt mining or shale gas exploration. The location of the seismogenic faults causing these moderate earthquakes has not been confirmed, resulting in a lack of understanding of the earthquake mechanisms in the study area. The detailed structural characteristics of pre-existing faults, which are typically responsible for induced seismicity, are unclear. In this study, we used high-resolution seismic reflection profiles in conjunction with geological, seismologic, and geodetic data to reveal the 3D distributions of the seismogenic faults. Basement thrust faults in the Changning anticline were identified using seismic interpretations and are associated with the 2019 Changning earthquake sequence. The geometry and location of these pre-existing faults are consistent with previous studies of the seismology and structural geology in the area. The well-developed pre-existing fault system in the sedimentary cover and basement makes the Changning area vulnerable to induced earthquakes. Present-day reactivation of the basement fault system reveals the unstable state of the local tectonic stress field. It is possible that the potential seismic risk in this region could be increased by industrial activity in the southwestern Sichuan basin.

2020 ◽  
Vol 91 (6) ◽  
pp. 3171-3181 ◽  
Author(s):  
Maomao Wang ◽  
Hongfeng Yang ◽  
Lihua Fang ◽  
Libo Han ◽  
Dong Jia ◽  
...  

Abstract Human activity-induced earthquakes are emerging as a global issue, and revealing its underlying mechanisms is essential for earthquake hazard mitigation and energy development. We investigated the relationship between the seismotectonic model and seismic sequences from moderate Mw 4.3 and Mw 5.2 earthquakes that occurred in February and September 2019, respectively, in the Weiyuan anticline of Sichuan basin, China. We found that the Mw 5.2 earthquake ruptured a back thrust of structural wedges and released most aftershocks near the wedge tip. However, the two foreshocks of the Mw 4.3 earthquake sequence occurred in hydrofractured Silurian shale at depth of 2.5–3 km, and the mainshock ruptured the overlying oblique tear fault at a depth of ∼1  km. Hydraulic fracturing in the sedimentary cover of this block may induce earthquakes through fluid pressure diffusion in the Silurian shale and through poroelastic effects on back thrusts within structural wedges, respectively. We assessed the hazard potential of four seismic sources in the Weiyuan block and suggest it is critical to conduct a coupled flow-geomechanics assessment and management on induced seismicity and related cascading effects in the densely inhabited and seismically active Sichuan basin.


2020 ◽  
Author(s):  
Vincenzo Sapia ◽  
Fabio Villani ◽  
Federico Fischanger ◽  
Matteo Lupi ◽  
Paola Baccheschi ◽  
...  

<p>The Castelluccio basin in the central Apennines (Italy) is a ~20-km<sup>2</sup>-wide intramontane Quaternary depression located in the hangingwall of the NW-trending and SW-dipping Vettore-Bove normal fault system (VBFS). This system is responsible for the 2016-2017 seismic sequence, culminated with the 30 October 2016 Mw 6.5 Norcia earthquake that caused widespread surface faulting affecting also the northern part of the Castelluccio basin. Available borehole and geophysical data are not enough to constrain the basin structure, infill architecture and their relations with the long-term activity of the VBFS. Therefore, we carried out an extensive 3D survey using the innovative Fullwaver (FW) technology, conceived to perform deep electrical resistivity tomography (DERT). We aimed at: a) mapping the geometry of the pre-Quaternary limestone basement and the basin infill thickness down to a depth of ~1 km; b) mapping the subsurface structure of known faults and their extent underneath the alluvial cover; c) mapping possible blind faults splays.</p><p>The 3D survey covered a 23 km<sup>2 </sup>area and it was designed with the aim to map the region as regularly as possible, taking into account the rugged topography and logistic issues. We used a series of independent 2-channels receivers connected each to three grounded steel electrodes, 200 m spaced, to record the electrical field generated by a five kilowatt current regulated Time Domain Induced Polarization transmitter. Data were modelled with ViewLab software via a regularized inversion with smoothness constraints to cope with the expected subsurface strong resistivity changes, and to obtain a robust 3D resistivity model.</p><p>The FW technology allowed us to constrain the geometry of the basin. The infill material is imaged as a wide, N-trending moderately resistive (< 300 Ωm) to conductive  (< 100 Ωm) region, likely made of silty sands and gravels, deepening down to 500 m b.g.l. in the southern sector, suggesting the occurrence of two main depocenters. All over the basin, we identify paired high-resistivity (> 500-1000 Ωm) and low-resistivity (< 400 Ωm) belts related to the limestone basement and to the basin infill, respectively. They display NNE and NNW dominant trends. We interpret the sharp boundaries of NNE-trending belts as related to early extensional faults promoting the basin inception. The NNW-trending belts suggest the occurrence of faults that locally cross-cut the previous ones, and that we interpret as splays of the VBFS buried under the basin sedimentary cover. The recognition of different systems of extensional faults is coherent with results of high-resolution seismic profiling carried out recently in the basin. A high-resolution 2D transect with 15 m-spaced electrodes across the 2016 surface ruptures shows details of the active VBFS splay down to 300 m depth. Moreover, in the eastern sector of the survey area, low-resistivity round-shaped anomalies in the Mesozoic substratum hints for deep Miocene compressional structures. Therefore, our DERT imaging suggests a complex tectonics in the subsurface of the Norcia earthquake fault. In particular, the currently active NNW-trending faults seem to overprint a pre-existing structural framework, promoting fault segmentation at different spatial scales</p>


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
В. Зинько ◽  
V. Zin'ko ◽  
А. Зверев ◽  
A. Zverev ◽  
М. Федин ◽  
...  

The seismoacoustical investigations was made in the western part of the Kerch strait (Azov sea) near Kamysh-Burun spit. The fracture zone with dislocated sedimentary rocks layers and buried erosional surface was revealed to the west of spit. Three seismofacial units was revealed to the east of spit. The first unit was modern sedimentary cover. The second ones has cross-bedding features and was, probably, the part of early generation of Kamysh-Burun spit, which lied to the east of its modern position. The lower border of the second unit is the erosional surface supposed of phanagorian age. The third unit is screened by acoustic shedows in large part.


Author(s):  
Guanning Pang ◽  
Keith Koper ◽  
Maria Mesimeri ◽  
Kristine Pankow ◽  
Benjamin Baker ◽  
...  

Geology ◽  
2013 ◽  
Vol 41 (6) ◽  
pp. 699-702 ◽  
Author(s):  
Katie M. Keranen ◽  
Heather M. Savage ◽  
Geoffrey A. Abers ◽  
Elizabeth S. Cochran

2021 ◽  
Author(s):  
Matthieu Ribot ◽  
Yann Klinger ◽  
Edwige Pons-Branchu ◽  
Marthe Lefevre ◽  
Sigurjón Jónsson

<p>Initially described in the late 50’s, the Dead Sea Fault system connects at its southern end to the Red Sea extensive system, through a succession of left-stepping faults. In this region, the left-lateral differential displacement of the Arabian plate with respect to the Sinai micro-plate along the Dead Sea fault results in the formation of a depression corresponding to the Gulf Aqaba. We acquired new bathymetric data in the areas of the Gulf of Aqaba and Strait of Tiran during two marine campaigns (June 2018, September 2019) in order to investigate the location of the active faults, which structure and control the morphology of the area. The high-resolution datasets (10-m posting) allow us to present a new fault map of the gulf and to discuss the seismic potential of the main active faults.</p><p>We also investigated the eastern margin of the Gulf of Aqaba and Tiran island to assess the vertical uplift rate. To do so, we computed high-resolution topographic data and we processed new series of U-Th analyses on corals from the uplifted marine terraces.</p><p>Combining our results with previous studies, we determined the local and the regional uplift in the area of the Gulf of Aqaba and Strait of Tiran.</p><p>Eventually, we discussed the tectonic evolution of the gulf since the last major change of the tectonic regime and we propose a revised tectonic evolution model of the area.</p><p> </p>


1995 ◽  
Vol 85 (3) ◽  
pp. 705-715
Author(s):  
Mark Andrew Tinker ◽  
Susan L. Beck

Abstract Regional distance surface waves are used to study the source parameters for moderate-size aftershocks of the 25 April 1992 Petrolia earthquake sequence. The Cascadia subduction zone had been relatively seismically inactive until the onset of the mainshock (Ms = 7.1). This underthrusting event establishes that the southern end of the North America-Gorda plate boundary is seismogenic. It was followed by two separate and distinct large aftershocks (Ms = 6.6 for both) occurring at 07:41 and 11:41 on 26 April, as well as thousands of other small aftershocks. Many of the aftershocks following the second large aftershock had magnitudes in the range of 4.0 to 5.5. Using intermediate-period surface-wave spectra, we estimate focal mechanisms and depths for one foreshock and six of the larger aftershocks (Md = 4.0 to 5.5). These seven events can be separated into two groups based on temporal, spatial, and principal stress orientation characteristics. Within two days of the mainshock, four aftershocks (Md = 4 to 5) occurred within 4 hr of each other that were located offshore and along the Mendocino fault. These four aftershocks comprise one group. They are shallow, thrust events with northeast-trending P axes. We interpret these aftershocks to represent internal compression within the North American accretionary prism as a result of Gorda plate subduction. The other three events compose the second group. The shallow, strike-slip mechanism determined for the 8 March foreshock (Md = 5.3) may reflect the right-lateral strike-slip motion associated with the interaction between the northern terminus of the San Andreas fault system and the eastern terminus of the Mendocino fault. The 10 May aftershock (Md = 4.1), located on the coast and north of the Mendocino triple junction, has a thrust fault focal mechanism. This event is shallow and probably occurred within the accretionary wedge on an imbricate thrust. A normal fault focal mechanism is obtained for the 5 June aftershock (Md = 4.8), located offshore and just north of the Mendocino fault. This event exhibits a large component of normal motion, representing internal failure within a rebounding accretionary wedge. These two aftershocks and the foreshock have dissimilar locations in space and time, but they do share a north-northwest oriented P axis.


2021 ◽  
pp. 1-73
Author(s):  
Pierre Karam ◽  
Shankar Mitra ◽  
Kurt Marfurt ◽  
Brett M. Carpenter

Synthetic transfer zones develop between fault segments which dip in the same direction, with relay ramps connecting the fault blocks separated by the different fault segments. The characteristics of the transfer zones are controlled by the lithology, deformation conditions, and strain magnitude. The Parihaka fault is a NE-SW trending set of three major en-echelon faults connected by relay ramps in the Taranaki Basin, New Zealand. The structure in the basin is defined by extension during two episodes of deformation between the late Cretaceous and Paleocene and between the Late Miocene and recent. To better understand the evolution of a synthetic transfer zone, we study the geometry and secondary faulting between the individual fault segments in the Parihaka fault system using structural interpretation of 3D seismic data and seismic attributes. This interpretation allows for a unique application of seismic attributes to better study transfer zones. Seismic attributes, including coherence, dip, and curvature are effective tools to understand the detailed geometry and variation in displacement on the individual faults, the nature of secondary faulting along the transfer zones, and the relationship between the faults and drape folds. Seismic characterization of the fault system of Miocene to Pliocene age horizons highlights variations in the degree of faulting, deformation, and growth mechanism associated with different stages of transfer zone development. Coherence, dip, and curvature attributes show a direct correlation with structural parameters such as deformation, folding, and breaching of relay ramps.. All three attributes enhance the visualization of the major and associated secondary faults and better constrain their tectonic history. The observed correlation between seismic attributes and structural characteristics of transfer zones can significantly improve structural interpretation and exploration workflow.


Sign in / Sign up

Export Citation Format

Share Document