scholarly journals Source Time Function Clustering Reveals Patterns in Earthquake Dynamics

Author(s):  
Jiuxun Yin ◽  
Zefeng Li ◽  
Marine A. Denolle

Abstract We cluster a global database of 3529 Mw>5.5 earthquakes in 1995–2018 based on a dynamic time warping distance between earthquake source time functions (STFs). The clustering exhibits different degrees of complexity of the STF shapes and suggests an association between STF complexity and earthquake source parameters. Most of the thrust events have simple STF shapes across all depths. In contrast, earthquakes with complex STF shapes tend to be located at shallow depths in complicated tectonic regions, exhibit long source duration compared with others of similar magnitude, and tend to have strike-slip mechanisms. With 2D dynamic modeling of dynamic ruptures on heterogeneous fault properties, we find a systematic variation of the simulated STF complexity with frictional properties. Comparison between the observed and synthetic clustering distributions provides useful constraints on frictional properties. In particular, the characteristic slip-weakening distance could be constrained to be short (<0.1  m) and depth dependent if stress drop is in general constant.

2015 ◽  
Vol 22 (5) ◽  
pp. 625-632
Author(s):  
P. A. Toledo ◽  
S. R. Riquelme ◽  
J. A. Campos

Abstract. We study the main parameters of earthquakes from the perspective of the first digit phenomenon: the nonuniform probability of the lower first digit different from 0 compared to the higher ones. We found that source parameters like coseismic slip distributions at the fault and coseismic inland displacements show first digit anomaly. We also found the tsunami runups measured after the earthquake to display the phenomenon. Other parameters found to obey first digit anomaly are related to the aftershocks: we show that seismic moment liberation and seismic waiting times also display an anomaly. We explain this finding by invoking a self-organized criticality framework. We demonstrate that critically organized automata show the first digit signature and we interpret this as a possible explanation of the behavior of the studied parameters of the Tohoku earthquake.


Author(s):  
Barry Hirshorn ◽  
Stuart Weinstein ◽  
Dailin Wang ◽  
Kanoa Koyanagi ◽  
Nathan Becker ◽  
...  

2016 ◽  
Vol 16 (2) ◽  
pp. 577-593 ◽  
Author(s):  
Katsuichiro Goda ◽  
Kamilla Abilova

Abstract. This study investigates the issues related to underestimation of the earthquake source parameters in the context of tsunami early warning and tsunami risk assessment. The magnitude of a very large event may be underestimated significantly during the early stage of the disaster, resulting in the issuance of incorrect tsunami warnings. Tsunamigenic events in the Tohoku region of Japan, where the 2011 tsunami occurred, are focused on as a case study to illustrate the significance of the problems. The effects of biases in the estimated earthquake magnitude on tsunami loss are investigated using a rigorous probabilistic tsunami loss calculation tool that can be applied to a range of earthquake magnitudes by accounting for uncertainties of earthquake source parameters (e.g., geometry, mean slip, and spatial slip distribution). The quantitative tsunami loss results provide valuable insights regarding the importance of deriving accurate seismic information as well as the potential biases of the anticipated tsunami consequences. Finally, the usefulness of rigorous tsunami risk assessment is discussed in defining critical hazard scenarios based on the potential consequences due to tsunami disasters.


2019 ◽  
Vol 219 (3) ◽  
pp. 1514-1531
Author(s):  
Somayeh Ahmadzadeh ◽  
G Javan Doloei ◽  
Stefano Parolai ◽  
Adrien Oth

SUMMARY S-wave spectral amplitudes from 312 crustal earthquakes recorded at the Iranian National Broadband Seismic Network in the Alborz region between 2005 and 2017 are analysed in order to evaluate earthquake source parameters, path attenuation and site amplification functions using the non-parametric generalized inversion technique (GIT). We exploit a total number of 1117 seismograms with ML 3–5.6 in the frequency range 0.3–20 Hz. The evaluated non-parametric attenuation functions decay uniformly with distance for the entire frequency range and the estimated S-wave quality factor shows low Q values with relatively strong frequency dependence. We assume the omega-square source model to retrieve earthquake source parameters from the inverted source spectra. The obtained stress drops range from 0.02 to 16 MPa with a mean value of 1.1 MPa. Stress drop and radiated energy show fairly self-similar scaling with seismic moment over the available magnitude range; however, the magnitude range of this study is too narrow to draw a definite conclusion on source scaling characteristics. The obtained moment magnitude Mw and the local magnitude ML are linearly correlated and approximately equivalent in the range of Mw 3–4. For larger events, Mw generally underestimates ML by about 0.1–0.5 magnitude units. The estimated site amplification functions for horizontal component (GIT H) are nearly flat with no obvious pre-dominant frequency peaks for most stations, as expected for the sites of permanent broad-band seismic stations located on rock, though a few stations show amplification peaks from 1 to 8 Hz, with a maximum amplification of about a factor of 7 with respect to the reference site. The evaluated site responses for the vertical components present remarkable amplification or deamplification, leading to differences of the H/V amplitude levels in comparison with the GIT H amplification curves. The results of this study provide a valuable basis for predicting appropriate ground motions in a context of seismic hazard assessment.


Sign in / Sign up

Export Citation Format

Share Document