Introducing ISMDq—A Web Portal for Real-Time Quality Monitoring of Italian Strong-Motion Data

Author(s):  
Marco Massa ◽  
Davide Scafidi ◽  
Claudia Mascandola ◽  
Alessio Lorenzetti

Abstract We present the Istituto Nazionale di Geofisica e Vulcanologia Strong-Motion Data-quality (ISMDq)—a new automatic system designed to check both continuous data stream and event strong-motion waveforms before online publication. The main purpose of ISMDq is to ensure accurate ground-motion data and derived products to be rapidly shared with monitoring authorities and the scientific community. ISMDq provides data-quality reports within minutes of the occurrence of Italian earthquakes with magnitude ≥3.0 and includes a detailed daily picture describing the performance of the target strong-motion networks. In this article, we describe and discuss the automatic procedures used by ISMDq to perform its data-quality check. Before an earthquake, ISMDq evaluates the selected waveforms through the estimation of quality indexes employed to reject bad data and/or to group approved data into classes of quality that are useful to quantify the level of reliability. The quality indexes are estimated based on comparisons with the background ambient noise level performed both in the time and frequency domains. As a consequence, new high- and low-noise reference levels are derived for the overall Italian strong-motion network, for each station, and for groups of stations in the same soil categories of the Eurocode 8 (Eurocode 8 [EC8], 2003). In absence of earthquakes, 24 hr streaming of ambient noise recordings are analyzed at each station to set an empirical threshold on selected data metrics and data availability, with the goal to build a station quality archive, which is daily updated in a time span of six months. The ISMDq is accessible online (see Data and Resources) from August 2020, providing rapid open access to ∼10,000 high-quality checked automatically processed strong-motion waveforms and metadata, relative to more than 160 Italian earthquakes with magnitude in the 3.0–5.2 range. Comparisons between selected strong-motion data automatically processed and then manually revised corroborate the reliability of the proposed procedures.

2012 ◽  
Vol 10 (2) ◽  
pp. 131-154
Author(s):  
Borko Bulajic ◽  
Miodrag Manic ◽  
Djordje Ladjinovic

Eurocode 8 allows that any country can use its own shape of the elastic response spectrum after it defines it in the National Annex. Having in mind that such country-specific spectra are to be derived through analysis of the strong motion data recorded in the considered seismo-tectonic region, in this Paper we discuss the existing and a set of new empirical equations for scaling pseudo-acceleration spectra in Serbia and the whole region of north-western Balkans. We then compare the presented spectra to those proposed by Eurocode 8. Results show that the indiscriminate use of the strong motion data from different seismo-tectonic regions, improper classification of the local soil conditions, and neglect of the effects of deep geology, may all lead to unreliable scaling equations and to extremely biased ground motion estimates. Moreover, only two spectral shapes that are defined for wide magnitude ranges and scaled by a single PGA value, are not able to adequately represent all important features of real strong ground motion, and instead of using such normalized spectra one should rather employ the direct scaling of spectral amplitudes that is based on the analysis of regionally gathered and processed strong motion data.


2012 ◽  
Vol 55 (3) ◽  
Author(s):  
Marco Massa ◽  
Sara Lovati ◽  
Rodolfo Puglia ◽  
Gabriele Ameri ◽  
Dario Sudati ◽  
...  

On May 20th 2012, at 02:03:52 UTC, a ML 5.9 (Mw 6.0) earthquake struck northern Italy (http://cnt.rm.ingv.it/). The epicentre was localized at 44.89˚ N and 11.23˚ E, in an area among the cities of Ferrara, Modena and Mantova. The event occurred at a depth of about 6.3 km, and was characterized by a reverse focal mechanism (http://cnt.rm.ingv.it/tdmt.html/). From May 20th, thousand of earthquakes, the strongest of which with a ML 5.8 (May 29th, 07:00:03 UTC), occurred in the same area (http://iside.rm.ingv.it/).This note presents a new web site, www.mi.ingv.it/ISMD/ismd.html/ (Figure 1) that includes about 2000 three-component strong-motion recordings of the events with 4.0 ≤ ML ≤ 5.9 occurred in the central part of the Pianura Padana Emiliana (northern Italy) from May 20th to June 12th. The data come from all INGV strong-motion stations installed in northern Italy (i.e. strong-motion stations of the National Seismic Network, RSN [Amato and Mele 2008]; Strong-Motion Network of Northern Italy, RAIS, http://rais.mi.ingv.it/ [Augliera et al. 2011]) and selected with a minimum latitude of 43.5˚ N. The earthquake locations reported in the web site come from the National Earthquake Centre of INGV (http://cnt.rm.ingv.it/).


1988 ◽  
Author(s):  
Kenneth W. Campbell ◽  
Sylvester Theodore Algermissen

2005 ◽  
Vol 21 (1) ◽  
pp. 91-124 ◽  
Author(s):  
John R. Evans ◽  
Robert H. Hamstra ◽  
Christoph Kündig ◽  
Patrick Camina ◽  
John A. Rogers

The ability of a strong-motion network to resolve wavefields can be described on three axes: frequency, amplitude, and space. While the need for spatial resolution is apparent, for practical reasons that axis is often neglected. TREMOR is a MEMS-based accelerograph using wireless Internet to minimize lifecycle cost. TREMOR instruments can economically augment traditional ones, residing between them to improve spatial resolution. The TREMOR instrument described here has dynamic range of 96 dB between ±2 g, or 102 dB between ±4 g. It is linear to <1% of full scale (FS), with a response function effectively shaped electronically. We developed an economical, very low noise, accurate (<1%FS) temperature compensation method. Displacement is easily recovered to 10-cm accuracy at full bandwidth, and better with care. We deployed prototype instruments in Oakland, California, beginning in 1998, with 13 now at mean spacing of ∼3 km—one of the most densely instrumented urban centers in the United States. This array is among the quickest in returning (PGA, PGV, Sa) vectors to ShakeMap, ∼75 to 100 s. Some 13 events have been recorded. A ShakeMap and an example of spatial variability are shown. Extensive tests of the prototypes for a commercial instrument are described here and in a companion paper.


2021 ◽  
Vol 109 ◽  
pp. 103253
Author(s):  
Sarit Chanda ◽  
M.C. Raghucharan ◽  
K.S.K. Karthik Reddy ◽  
Vasudeo Chaudhari ◽  
Surendra Nadh Somala

2021 ◽  
Vol 21 (1) ◽  
pp. 1_25-1_45
Author(s):  
Toshihide KASHIMA ◽  
Shin KOYAMA ◽  
Hiroto NAKAGAWA

Sign in / Sign up

Export Citation Format

Share Document