TREMOR: A Wireless MEMS Accelerograph for Dense Arrays

2005 ◽  
Vol 21 (1) ◽  
pp. 91-124 ◽  
Author(s):  
John R. Evans ◽  
Robert H. Hamstra ◽  
Christoph Kündig ◽  
Patrick Camina ◽  
John A. Rogers

The ability of a strong-motion network to resolve wavefields can be described on three axes: frequency, amplitude, and space. While the need for spatial resolution is apparent, for practical reasons that axis is often neglected. TREMOR is a MEMS-based accelerograph using wireless Internet to minimize lifecycle cost. TREMOR instruments can economically augment traditional ones, residing between them to improve spatial resolution. The TREMOR instrument described here has dynamic range of 96 dB between ±2 g, or 102 dB between ±4 g. It is linear to <1% of full scale (FS), with a response function effectively shaped electronically. We developed an economical, very low noise, accurate (<1%FS) temperature compensation method. Displacement is easily recovered to 10-cm accuracy at full bandwidth, and better with care. We deployed prototype instruments in Oakland, California, beginning in 1998, with 13 now at mean spacing of ∼3 km—one of the most densely instrumented urban centers in the United States. This array is among the quickest in returning (PGA, PGV, Sa) vectors to ShakeMap, ∼75 to 100 s. Some 13 events have been recorded. A ShakeMap and an example of spatial variability are shown. Extensive tests of the prototypes for a commercial instrument are described here and in a companion paper.

2022 ◽  
Vol 17 (01) ◽  
pp. C01047
Author(s):  
E. Fabbrica ◽  
M. Carminati ◽  
D. Butta ◽  
M. Uslenghi ◽  
M. Fiorini ◽  
...  

Abstract We present the design of the first prototype of MIRA (MIcro-channel plate Readout ASIC) that has been designed to read out Micro-Channel Plates (MCP), in particular for UV spectroscopy. MIRA will be able to detect the cloud of electrons generated by each photon interacting with the MCP, sustaining high local and global count rates to fully exploit the MCP intrinsic dynamic range with low dead time. The main rationale that guided the electronics design is the reduction of the input Equivalent Noise Charge (ENC) in order to allow operations with lower MCP gain, thus improving its lifetime, crucial aspect for long missions in space. MIRA features two selectable analog processing times, 133 ns or 280 ns (i.e. fast mode or slow mode), granting a count rate per pixel of 100 kcps. Moreover, it shows an Equivalent Noise Charge ENC = 17 e r m s − . A spatial resolution of 35 μm and an operation with zero dead time, due to the readout, are targeted. The low noise, high count rate and high spatial resolution requirements are expected by keeping a compact pixel size (35 μm × 35 μm) for a total of 32 × 32 pixels in a 2 mm × 2 mm ASIC area. In this work, the ASIC design is described.


Author(s):  
Marco Massa ◽  
Davide Scafidi ◽  
Claudia Mascandola ◽  
Alessio Lorenzetti

Abstract We present the Istituto Nazionale di Geofisica e Vulcanologia Strong-Motion Data-quality (ISMDq)—a new automatic system designed to check both continuous data stream and event strong-motion waveforms before online publication. The main purpose of ISMDq is to ensure accurate ground-motion data and derived products to be rapidly shared with monitoring authorities and the scientific community. ISMDq provides data-quality reports within minutes of the occurrence of Italian earthquakes with magnitude ≥3.0 and includes a detailed daily picture describing the performance of the target strong-motion networks. In this article, we describe and discuss the automatic procedures used by ISMDq to perform its data-quality check. Before an earthquake, ISMDq evaluates the selected waveforms through the estimation of quality indexes employed to reject bad data and/or to group approved data into classes of quality that are useful to quantify the level of reliability. The quality indexes are estimated based on comparisons with the background ambient noise level performed both in the time and frequency domains. As a consequence, new high- and low-noise reference levels are derived for the overall Italian strong-motion network, for each station, and for groups of stations in the same soil categories of the Eurocode 8 (Eurocode 8 [EC8], 2003). In absence of earthquakes, 24 hr streaming of ambient noise recordings are analyzed at each station to set an empirical threshold on selected data metrics and data availability, with the goal to build a station quality archive, which is daily updated in a time span of six months. The ISMDq is accessible online (see Data and Resources) from August 2020, providing rapid open access to ∼10,000 high-quality checked automatically processed strong-motion waveforms and metadata, relative to more than 160 Italian earthquakes with magnitude in the 3.0–5.2 range. Comparisons between selected strong-motion data automatically processed and then manually revised corroborate the reliability of the proposed procedures.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5958
Author(s):  
Zhen-Wei Han ◽  
Ke-Fei Song ◽  
Hong-Ji Zhang ◽  
Miao Yu ◽  
Ling-Ping He ◽  
...  

The radiation intensity of observed auroras in the far-ultraviolet (FUV) band varies dramatically with location for aerospace applications, requiring a photon counting imaging apparatus with a wide dynamic range. However, combining high spatial resolution imaging with high event rates is technically challenging. We developed an FUV photon counting imaging system for aurora observation. Our system mainly consists of a microchannel plate (MCP) stack readout using a wedge strip anode (WSA) with charge induction and high-speed electronics, such as a charge sensitive amplifier (CSA) and pulse shaper. Moreover, we constructed an anode readout model and a time response model for readout circuits to investigate the counting error in high counting rate applications. This system supports global rates of 500 kilo counts, 0.610 dark counts s−1 cm−2 at an ambient temperature of 300 K and 111 µm spatial resolution at 400 kilo counts s−1 (kcps). We demonstrate an obvious photon count loss at incident intensities close to the counting capacity of the system. To preserve image quality, the response time should be improved and some noise performance may be sacrificed. Finally, we also describe the correlation between counting rate and imaging resolution, which further guides the design of space observation instruments.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4268
Author(s):  
Hongzhi Ouyang ◽  
Xueling Yao ◽  
Jingliang Chen

Transient magnetic field sensors are used in various electromagnetic environment measurement scenarios. In this paper, a novel magnetic field sensor based on a digital integrator was developed. The antenna was a small B-DOT loop. It was designed optimally for the simulation. The magnetic field signal was digitally integrated with the improved Al-Alaoui algorithm, resulting in less integration error. To compensate for the bandwidth loss of the optical fiber system, we specially designed an FIR (finite impulse response) filter for frequency compensation. The circuit was described, and the transimpedance amplifier was specially designed to ensure the low noise characteristic of the receiver. The sensitivity of the sensor was calibrated at 68.2 A·m−1/mV, the dynamic range was 50 dB (1–300 kA/m), the linear correlation coefficient was 0.96, and the bandwidth was greater than 100 MHz. It was tested and verified under the action of an A-type lightning current. The sensor exhibited high-precision performance and flat amplitude-frequency characteristics. Therefore, it is suitable for lightning positioning, partial discharge testing, electromagnetic compatibility management, and other applications.


2016 ◽  
Vol 23 (1) ◽  
pp. 214-218 ◽  
Author(s):  
G. Bortel ◽  
G. Faigel ◽  
M. Tegze ◽  
A. Chumakov

Kossel line patterns contain information on the crystalline structure, such as the magnitude and the phase of Bragg reflections. For technical reasons, most of these patterns are obtained using electron beam excitation, which leads to surface sensitivity that limits the spatial extent of the structural information. To obtain the atomic structure in bulk volumes, X-rays should be used as the excitation radiation. However, there are technical problems, such as the need for high resolution, low noise, large dynamic range, photon counting, two-dimensional pixel detectors and the small spot size of the exciting beam, which have prevented the widespread use of Kossel pattern analysis. Here, an experimental setup is described, which can be used for the measurement of Kossel patterns in a reasonable time and with high resolution to recover structural information.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850104 ◽  
Author(s):  
Yuwadee Sundarasaradula ◽  
Apinunt Thanachayanont

This paper presents the design and realization of a low-noise, low-power, wide dynamic range CMOS logarithmic amplifier for biomedical applications. The proposed amplifier is based on the true piecewise linear function by using progressive-compression parallel-summation architecture. A DC offset cancellation feedback loop is used to prevent output saturation and deteriorated input sensitivity from inherent DC offset voltages. The proposed logarithmic amplifier was designed and fabricated in a standard 0.18[Formula: see text][Formula: see text]m CMOS technology. The prototype chip includes six limiting amplifier stages and an on-chip bias generator, occupying a die area of 0.027[Formula: see text]mm2. The overall circuit consumes 9.75[Formula: see text][Formula: see text]W from a single 1.5[Formula: see text]V power supply voltage. Measured results showed that the prototype logarithmic amplifier exhibited an 80[Formula: see text]dB input dynamic range (from 10[Formula: see text][Formula: see text]V to 100[Formula: see text]mV), a bandwidth of 4[Formula: see text]Hz–10[Formula: see text]kHz, and a total input-referred noise of 5.52[Formula: see text][Formula: see text]V.


1976 ◽  
Vol 4 (2) ◽  
pp. 89-97
Author(s):  
Thaddeus V. Gromada

Most of the one and one-half million Poles who immigrated to the United States before World War II were people of rural, Catholic, Slavic stock in search of greater economic and social opportunities. They settled in urban centers primarily in the middle Atlantic, mid-Western, and New England states where they formed communities (Polonias) around the steel mills, coal and iron mines, slaughter houses and meat packing plants, oil refineries, shoe and textile factories, granaries and milling plants. Their labor was an important element in the industrialization of America. They were among the millions of unknown persons from eastern and southern Europe, as Michael Novak put it, “who have strengthened family and neighborhood life in America, and from 1930's to the present have made possible the longest strides in the nation's history in economic matters and civil rights.” Very few scholars and intellectuals, however, could be found among these Polish immigrants. When Polish scholars, intellectuals, or artists emigrated from partitioned Poland, usually after unsuccessful revolutions, they settled in France or some other European country.


Sign in / Sign up

Export Citation Format

Share Document