Near-field source parameters by finite-source theoretical seismograms

1977 ◽  
Vol 67 (3) ◽  
pp. 631-640 ◽  
Author(s):  
Moshe Israel ◽  
Moshe Vered

abstract Near-field seismograms due to finite faulting in a half-space were calculated. An attempt is made to evaluate near-field fault parameters by using two criteria: (1) agreement of observed and theoretical pulse width; and (2) agreement of observed and calculated amplitude ratios of the horizontal components of motion. Using this method we have investigated possible fault parameters of an earthquake along the San Andreas fault (source depth 12.5 km), recorded at two stations (epicentral distance 2.3, 5.5 km). It is found that computed seismograms are strongly dependent on the point in which a unilateral fracture begins. Assuming different initial failure points within the uncertainty region of the hypocentral location may effect fault parameter solutions. Thus, fault parameters obtained in this study should not be viewed as unique. However, we have shown, that for an assumed point and dynamics model, it is possible to determine rupture direction and source parameters. The seismic moment found in this study is weakly dependent on the dynamics model assumed.

2020 ◽  
Author(s):  
Zheng Gong ◽  
Yan Jing ◽  
Haibing Li

<p>Strain caused by earthquakes give rise to many earthquake-related hydrological changes. Mechanisms responsible for them are different from place to place, depending on whether the trigger is the static strain or dynamic strain. Theoretic calculation indicates that the great difference in dependence on epicentral distance is robust enough to discriminate them, however, few studies based on direct strain measurements have tested this hypothesis. The 2016 M6.2 Hutubi Earthquake is a reverse event occurred in the northern Chinese Tien Shan, and the coseismic strain responses have been recorded by nine 4-component RZB borehole strainmeters at the distance from near field to far field. The nearest four stations have recorded resolvable static strain responses, and all stations have perfectly recorded the dynamic strain waves. Our result shows that the difference in the dependence on distance is truly reliable to differentiate static strains from dynamic strains, the static strain is of the same magnitude with the dynamic strain in the near field, and as the distance increase to intermediate and far field, the static strain are a few magnitude smaller. Yet the ratio between them is a complex index relating to the rupturing process itself, the tectonic background, and the seismic wave radiation pattern. Furthermore, the calibrated static strain were also used to relocate the fault plane through a grid-search method, and the result shows that the seismogenic fault is surprisingly a high-angle backthrust fault. The determined fault parameters are 279°/70°/87°, which are also consistent with the aftershock distribution. It indicates that the high-angle backthrust in the Chinese Tien Shan are capable of breaking individually. Considering the high vertical displacement, and their abundance inside the Tien Shan orogenic belt, the high-angle backthrust faults may had also played a significant role in building the modern ultra-high relief in Tien Shan.</p>


1999 ◽  
Vol 89 (6) ◽  
pp. 1558-1574 ◽  
Author(s):  
Bertrand Delouis ◽  
Denis Legrand

Abstract A waveform inversion scheme was developed in order to explore the resolving power of one or two seismic recordings at short epicentral distance for the determination of focal mechanisms and the identification of the fault plane of earthquakes. Two key features are used to constrain the fault parameters with a reduced number of stations: (1) a simple finite-dimension source model and (2) the modeling of the complete displacement field, including the near-field waves. The identification of the fault plane should be possible, even with a single station, as soon as the seismograms produced by the two nodal planes of a same focal mechanism are significantly different, which is the general case when waveforms are controlled by source finiteness. Seven parameters, including the strike, dip, rake, and dislocation, are explored with a grid search, and the minima of the misfit error between the observed and calculated seismograms are mapped. With such an approach, it is possible to conclude about the uniqueness or nonuniqueness of the solutions. The method is tested with three earthquakes of moderate to large size for which the fault plane is well established and for which strong-motion records are available at maximum distances of a few tens of kilometers. Test events are the 1994 Northridge (Mw = 6.7, California), the 1996 Copala (Mw = 7.3, Mexico), and the 1996 Pinotepa Nacional (Mw = 5.4, Mexico) earthquakes. In the case of inversions with two stations, we find a unique solution, or a group of similar solutions, with a good estimation of the focal mechanism and the proper selection of the fault plane. Our results also show that in some cases a single station may be enough to recover the fault parameters. The inversion scheme presented here may be systematically applied to future earthquakes, especially to those recorded by few stations. It should be particularly useful in the case of blind faults for which the fault plane may not be identified with the help of other data.


2012 ◽  
Vol 92 (2) ◽  
pp. 547-552 ◽  
Author(s):  
Mohammed Nabil El Korso ◽  
Rémy Boyer ◽  
Alexandre Renaux ◽  
Sylvie Marcos

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Ade Anggraini ◽  
Wiwit Suryanto

AbstractThis study comprehensively investigates the source mechanisms associated with the mainshock and aftershocks of the Mw = 6.3 Yogyakarta earthquake which occurred on May 27, 2006. The process involved using moment tensor inversion to determine the fault plane parameters and joint inversion which were further applied to understand the spatial and temporal slip distributions during the earthquake. Moreover, coseismal slip distribution was overlaid with the relocated aftershock distribution to determine the stress field variations around the tectonic area. Meanwhile, the moment tensor inversion made use of near-field data and its Green’s function was calculated using the extended reflectivity method while the joint inversion used near-field and teleseismic body wave data which were computed using the Kikuchi and Kanamori methods. These data were filtered through a trial-and-error method using a bandpass filter with frequency pairs and velocity models from several previous studies. Furthermore, the Akaike Bayesian Information Criterion (ABIC) method was applied to obtain more stable inversion results and different fault types were discovered. Strike–slip and dip-normal were recorded for the mainshock and similar types were recorded for the 8th aftershock while the 9th and 16th June were strike slips. However, the fault slip distribution from the joint inversion showed two asperities. The maximum slip was 0.78 m with the first asperity observed at 10 km south/north of the mainshock hypocenter. The source parameters discovered include total seismic moment M0 = 0.4311E + 19 (Nm) or Mw = 6.4 with a depth of 12 km and a duration of 28 s. The slip distribution overlaid with the aftershock distribution showed the tendency of the aftershock to occur around the asperities zone while a normal oblique focus mechanism was found using the joint inversion.


Author(s):  
Dino Bindi ◽  
Hoby N. T. Razafindrakoto ◽  
Matteo Picozzi ◽  
Adrien Oth

ABSTRACT We investigate the impact of considering a depth-dependent attenuation model on source parameters assessed through a spectral decomposition. In particular, we evaluate the effect of considering the hypocentral depth as an additional variable for the attenuation model, using as the target the tendency of the average stress drop to increase with depth, as observed in recent studies. We analyze the Fourier spectra of S-wave windows for about 1900 earthquakes with a magnitude above 2.5 recorded in the Ridgecrest region, southern California. Two different parameterizations of the attenuation term are implemented in the spectral decomposition, either as a function of the hypocentral distance alone or as a function of both epicentral distance and depth. The comparison of the spectral attenuation curves shows that, although the hypocentral model describes, on average, the range of values spanned by the attenuation curve for different depths, systematic differences with distance, depth, and frequency are observed. These differences are transferred to the source spectra and, in turn, to the source parameters extracted from the best-fitting ω−2 models. In particular, stress drops for events deeper than 7 km are, on average, almost double even when depth is introduced explicitly in the attenuation model. The increase of stress drop with depth is confirmed also after accounting for the increase of the shear velocity with depth, which absorbs about 30%–40% of the total increase. Moreover, a qualitative comparison with a model for the gradient of the effective normal stress confirms the reliability of the observed trend. Finally, the coherent spatial patterns shown by a simplified 2D tomographic representation of the spectral residuals highlights the impact on ground-shaking variability of the lateral variability of the crustal attenuation properties in the region.


Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 339-354 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch ◽  
T. Nissen-Meyer

Abstract. Triplicated body waves sample the mantle transition zone more extensively than any other wave type, and interact strongly with the discontinuities at 410 km and 660 km. Since the seismograms bear a strong imprint of these geodynamically interesting features, it is highly desirable to invert them for structure of the transition zone. This has rarely been attempted, due to a mismatch between the complex and band-limited data and the (ray-theoretical) modelling methods. Here we present a data processing and modelling strategy to harness such broadband seismograms for finite-frequency tomography. We include triplicated P-waves (epicentral distance range between 14 and 30°) across their entire broadband frequency range, for both deep and shallow sources. We show that is it possible to predict the complex sequence of arrivals in these seismograms, but only after a careful effort to estimate source time functions and other source parameters from data, variables that strongly influence the waveforms. Modelled and observed waveforms then yield decent cross-correlation fits, from which we measure finite-frequency traveltime anomalies. We discuss two such data sets, for North America and Europe, and conclude that their signal quality and azimuthal coverage should be adequate for tomographic inversion. In order to compute sensitivity kernels at the pertinent high body wave frequencies, we use fully numerical forward modelling of the seismic wavefield through a spherically symmetric Earth.


Author(s):  
Juh-Whan Lee ◽  
Jennifer L. Irish ◽  
Robert Weiss

Since near-field-generated tsunamis can arrive within a few minutes to coastal communities and cause immense damage to life and property, tsunami forecasting systems should provide not only accurate but also rapid tsunami run-up estimates. For this reason, most of the tsunami forecasting systems rely on pre-computed databases, which can forecast tsunamis rapidly by selecting the most closely matched scenario from the databases. However, earthquakes not included in the database can occur, and the resulting error in the tsunami forecast may be large for these earthquakes. In this study, we present a new method that can forecast near-field tsunami run-up estimates for any combination of earthquake fault parameters on a real topography in near real-time, hereafter called the Tsunami Run-up Response Function (TRRF).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/tw1D29dDxmY


Sign in / Sign up

Export Citation Format

Share Document