S-wave attenuation in the crust in northern Greece

1995 ◽  
Vol 85 (5) ◽  
pp. 1381-1387 ◽  
Author(s):  
P. M. Hatzidimitriou

Abstract The attenuation of shear waves in the crust is estimated, for frequencies between 1.5 and 12.0 Hz, by applying a single-station method based on the rate of decay of the S-wave to coda-wave amplitude ratio with distance. The data used come from local earthquakes that occurred in the Thessaloniki area, northern Greece, during the period 1983 through 1989 and were recorded by the telemetered network of the Geophysical Laboratory of the University of Thessaloniki. The Qs values obtained are 115, 244, 477, and 755 for 1.5, 3.0, 6.0, and 12.0 Hz, respectively. These values are very close to the coda Q values estimated for the same area using the S-to-S single scattering model for lapse times between 30 and 100 sec but they are higher than the coda Q values for lapse times between 10 and 30 sec. The estimated Qs is found to be strongly frequency dependent, proportional to f0.91, which is very close to the frequency dependence of the coda Q.

1988 ◽  
Vol 78 (3) ◽  
pp. 1279-1296
Author(s):  
Zhong-Xian Huang ◽  
Max Wyss

Abstract Coda Q values were derived for more than 300 microearthquakes that occurred in a 6-yr period before the 16 November 1983 Kaoiki, Hawaii, earthquake (MS = 6.6). The sources were located within a 14 × 16 km rectangular region surrounding the main shock epicenter, and most of them occurred at depths between 5 and 10 km. Digital recordings from three stations at epicentral distances ranging from 0 to 18 km were used. Coda Q was calculated from the amplitude decay rate of the S-wave coda in nine frequency bands from 4.5 to 27 Hz. The average Q of the NW part of the studied area is about 15 per cent higher than that of the SE part. These two subregions also showed differences in seismicity, b value, and microearthquake source mechanisms. In the high-Q volume, the b value was 1.0, and the rate of earthquakes per unit volume was about 50 per cent of the rate in the low-Q volume where b = 1.3. One interpretation of these observations is that more extensive faulting in the SE Kaoiki fault zone leads to lower Q, higher b value, and a higher seismicity rate. During the 5 to 6 yr before the mainshock, the 1-yr average Q values were stable. No significant Q change could be identified as a precursor to the main shock.


1987 ◽  
Vol 24 (8) ◽  
pp. 1727-1733 ◽  
Author(s):  
Cecilio J. Rebollar ◽  
Rosa M. Alvarez

Brune's stress drop, apparent stress, and arms stress drop are estimated at a single station for 25 aftershocks of the Ometepec earthquakes (Ms = 6.9 and Ms = 7.0). The arms stress drops and apparent stresses are systematically smaller than Brune's stress drops. Stress drops from the root mean square of acceleration and apparent stress range from 0.01 to 10.2 bars (1 bar = 100 kPa) except for two values (21.4 and 33.0 bars). On the other hand, Brune's stress drops range from 0.6 to 239 bars. Seismic moments ranging from 0.5 × 1019 to 289 × 1019 dyn∙cm (1 dyn∙cm = 10 μN∙cm) were estimated for events with coda magnitudes between 0.6 and 2.2. Values of radiated seismic energy calculated by integration of the displacement spectra range from 2.5 × 1012 to 2.3 × 1016 dyn∙cm. The fmax values lie between 16 and 30 Hz. Seismic coda wave attenuation measured on narrow band-pass-filtered seismograms show a linear dependence of the seismic quality factor of the form [Formula: see text] in the range of frequencies from 3 to 24 Hz.


1987 ◽  
Vol 77 (4) ◽  
pp. 1223-1251
Author(s):  
Arthur Frankel ◽  
Leif Wennerberg

Abstract A new model of seismic coda is presented, based on the balance between the energy scattered from the direct wave and the energy in the seismic coda. This energy-flux model results in a simple formula for the amplitude and time decay of the seismic coda that explicitly differentiates between the scattering and intrinsic (anelastic) attenuation of the medium. This formula is valid for both weak and strong scattering and implicitly includes multiple scattering. The model is tested using synthetic seismograms produced in finite difference simulations of wave propagation through media with random spatial variations in seismic velocity. Some of the simulations also included intrinsic dissipation. The energy-flux model explains the coda decay and amplitude observed in the synthetics, for random media with a wide range of scattering Q. In contrast, the single-scattering model commonly used in the analysis of microearthquake coda does not account for the gradual coda decay observed in the simulations for media with moderate or strong scattering attenuation (scattering Q ≦ 150). The simulations demonstrate that large differences in scattering attenuation cause only small changes in the coda decay rate, as predicted by the energy-flux model. The coda decay rate is sensitive, however, to the intrinsic Q of the medium. The ratio of the coda amplitude to the energy in the direct arrival is a measure of the scattering attenuation. Thus, analysis of the decay rate and amplitude of the coda can, in principle, produce separate estimates for the scattering and intrinsic Q values of the crust. We analyze the coda from two earthquakes near Anza, California. Intrinsic Q values determined from these seismograms using the energy-flux model are comparable to coda Q values found from the single-scattering theory. These results indicate that coda Q values are, at best, measures of the intrinsic Q of the lithosphere and are unrelated to the scattering Q.


1995 ◽  
Vol 85 (5) ◽  
pp. 1373-1380 ◽  
Author(s):  
Edoardo Del Pezzo ◽  
Jesus Ibanez ◽  
José Morales ◽  
Aybige Akinci ◽  
Rosalba Maresca

Abstract Intrinsic and scattering attenuation parameters, Qi and QS, have been measured in three different tectonic areas for local and shallow earthquakes located close to the receiver. The approach developed by Wennerberg (1993), which takes into account the numerical correction of the coda-Q parameter for the multiple scattering formulation of Zeng, was used to infer from the estimates of coda Q and direct S-wave Q the intrinsic (Qi) and scattering (QS) Q values. Results for 1 to 12 Hz range show that Qi is comparable to QS for the Etna volcano and for the Campi Flegrei area, while Qi for the tectonically active area of Granada is lower than QS. Coda Q is close to intrinsic Q, suggesting that, at least in the crust, coda Q is a good estimate of the intrinsic Q. Volcanic areas show a reasonable higher degree of heterogeneity, if compared with the nonvolcanic area of Granada.


1994 ◽  
Vol 84 (3) ◽  
pp. 613-624 ◽  
Author(s):  
Arthur Frankel

Abstract Fourteen GEOS seismic recorders were deployed in the San Bernardino Valley to study the propagation of short-period (T ≈ 1 to 3 sec) surface waves and Moho reflections. Three dense arrays were used to determine the direction and speed of propagation of arrivals in the seismograms. The seismograms for a shallow (d ≈ 1 km) M 4.9 aftershock of the Big Bear earthquake exhibit a very long duration (60 sec) of sustained shaking at periods of about 2 sec. Array analysis indicates that these late arrivals are dominated by surface waves traveling in various directions across the Valley. Some energy is arriving from a direction 180° from the epicenter and was apparently reflected from the edge of the Valley opposite the source. A close-in aftershock (Δ = 25 km, depth = 7 km) displays substantial short-period surface waves at deep-soil sites. A three-dimensional (3D) finite difference simulation produces synthetic seismograms with durations similar to those of the observed records for this event, indicating the importance of S-wave to surface-wave conversion near the edge of the basin. Flat-layered models severely underpredict the duration and spectral amplification of this deep-soil site. I show an example where the coda wave amplitude ratio at 1 to 2 Hz between a deep-soil and a rock site does not equal the S-wave amplitude ratio, because of the presence of surface waves in the coda of the deep-soil site. For one of the events studied (Δ ≈ 90 km), there are sizable phases that are critically reflected from the Moho (PmP and SmS). At one of the rock sites, the SmS phase has a more peaked spectrum that the direct S wave.


1998 ◽  
Vol 25 (14) ◽  
pp. 2733-2736 ◽  
Author(s):  
Horasan Gündüz ◽  
Kaşlilar-Özcan Ayşe ◽  
Boztepe-Güney Aysun ◽  
Türkelli Niyazi

Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 755-765 ◽  
Author(s):  
Xinhua Sun ◽  
Xiaoming Tang ◽  
C. H. (Arthur) Cheng ◽  
L. Neil Frazer

In this paper, a modification of an existing method for estimating relative P-wave attenuation is proposed. By generating synthetic waveforms without attenuation, the variation of geometrical spreading related to changes in formation properties with depth can be accounted for. With the modified method, reliable P- and S-wave attenuation logs can be extracted from monopole array acoustic waveform log data. Synthetic tests show that the P- and S-wave attenuation values estimated from synthetic waveforms agree well with their respective model values. In‐situ P- and S-wave attenuation profiles provide valuable information about reservoir rock properties. Field data processing results show that this method gives robust estimates of intrinsic attenuation. The attenuation profiles calculated independently from each waveform of an eight‐receiver array are consistent with one another. In fast formations where S-wave velocity exceeds the borehole fluid velocity, both P-wave attenuation ([Formula: see text]) and S-wave attenuation ([Formula: see text]) profiles can be obtained. P- and S-wave attenuation profiles and their comparisons are presented for three reservoirs. Their correlations with formation lithology, permeability, and fractures are also presented.


Sign in / Sign up

Export Citation Format

Share Document