Energy-flux model of seismic coda: Separation of scattering and intrinsic attenuation

1987 ◽  
Vol 77 (4) ◽  
pp. 1223-1251
Author(s):  
Arthur Frankel ◽  
Leif Wennerberg

Abstract A new model of seismic coda is presented, based on the balance between the energy scattered from the direct wave and the energy in the seismic coda. This energy-flux model results in a simple formula for the amplitude and time decay of the seismic coda that explicitly differentiates between the scattering and intrinsic (anelastic) attenuation of the medium. This formula is valid for both weak and strong scattering and implicitly includes multiple scattering. The model is tested using synthetic seismograms produced in finite difference simulations of wave propagation through media with random spatial variations in seismic velocity. Some of the simulations also included intrinsic dissipation. The energy-flux model explains the coda decay and amplitude observed in the synthetics, for random media with a wide range of scattering Q. In contrast, the single-scattering model commonly used in the analysis of microearthquake coda does not account for the gradual coda decay observed in the simulations for media with moderate or strong scattering attenuation (scattering Q ≦ 150). The simulations demonstrate that large differences in scattering attenuation cause only small changes in the coda decay rate, as predicted by the energy-flux model. The coda decay rate is sensitive, however, to the intrinsic Q of the medium. The ratio of the coda amplitude to the energy in the direct arrival is a measure of the scattering attenuation. Thus, analysis of the decay rate and amplitude of the coda can, in principle, produce separate estimates for the scattering and intrinsic Q values of the crust. We analyze the coda from two earthquakes near Anza, California. Intrinsic Q values determined from these seismograms using the energy-flux model are comparable to coda Q values found from the single-scattering theory. These results indicate that coda Q values are, at best, measures of the intrinsic Q of the lithosphere and are unrelated to the scattering Q.

1995 ◽  
Vol 85 (5) ◽  
pp. 1381-1387 ◽  
Author(s):  
P. M. Hatzidimitriou

Abstract The attenuation of shear waves in the crust is estimated, for frequencies between 1.5 and 12.0 Hz, by applying a single-station method based on the rate of decay of the S-wave to coda-wave amplitude ratio with distance. The data used come from local earthquakes that occurred in the Thessaloniki area, northern Greece, during the period 1983 through 1989 and were recorded by the telemetered network of the Geophysical Laboratory of the University of Thessaloniki. The Qs values obtained are 115, 244, 477, and 755 for 1.5, 3.0, 6.0, and 12.0 Hz, respectively. These values are very close to the coda Q values estimated for the same area using the S-to-S single scattering model for lapse times between 30 and 100 sec but they are higher than the coda Q values for lapse times between 10 and 30 sec. The estimated Qs is found to be strongly frequency dependent, proportional to f0.91, which is very close to the frequency dependence of the coda Q.


1989 ◽  
Vol 79 (3) ◽  
pp. 774-789
Author(s):  
Charles A. Langston

Abstract The codas of long-period Rayleigh waves recorded at WWSSN and Canadian network stations in Western North America from eight underground explosions at NTS are examined in an effort to separate scattering and anelastic attenuation effects. Coda behavior of 0.1 and 0.2 hz Rayleigh waves follows coda characteristics seen in studies of short-period S waves. Coda decay rate is seen to be a stable observation over most stations in Western North America and is consistent with the hypothesis that backscattered surface waves from heterogeneities contained within the western half of the continent form the Rayleigh wave coda. The basic data observables of coda level and decay are interpreted using several plausible models. The single scattering model yields a coda Q consistent with previously determined Rayleigh anelastic attenuation coefficients. Separation of anelastic and scattering Q is possible using an energy flux model and shows that scattering Q is one to two orders of magnitude higher than anelastic Q. However, an energy flux model that incorporates a layer of scatterers over a homogeneous half-space shows that all Rayleigh-wave attenuation can be explained purely by scattering effects which include Rayleigh- to body-wave conversion. Coda can be fit equally well by these mutually incompatible models. It is not likely that the mechanisms of scattering or anelastic attenuation can be addressed by coda observations of a single homogeneous data set.


Author(s):  
Yan Chen ◽  
Ward Whitt

In order to understand queueing performance given only partial information about the model, we propose determining intervals of likely values of performance measures given that limited information. We illustrate this approach for the mean steady-state waiting time in the $GI/GI/K$ queue. We start by specifying the first two moments of the interarrival-time and service-time distributions, and then consider additional information about these underlying distributions, in particular, a third moment and a Laplace transform value. As a theoretical basis, we apply extremal models yielding tight upper and lower bounds on the asymptotic decay rate of the steady-state waiting-time tail probability. We illustrate by constructing the theoretically justified intervals of values for the decay rate and the associated heuristically determined interval of values for the mean waiting times. Without extra information, the extremal models involve two-point distributions, which yield a wide range for the mean. Adding constraints on the third moment and a transform value produces three-point extremal distributions, which significantly reduce the range, producing practical levels of accuracy.


1977 ◽  
Vol 28 (3) ◽  
pp. 313-321 ◽  
Author(s):  
M.M. Kosanić ◽  
M.T. Nenadović ◽  
B.B. Radak ◽  
V.M. Marković ◽  
W.L. McLaughlin

1998 ◽  
Vol 88 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Mitchell Withers ◽  
Richard Aster ◽  
Christopher Young ◽  
Judy Beiriger ◽  
Mark Harris ◽  
...  

Abstract Digital algorithms for robust detection of phase arrivals in the presence of stationary and nonstationary noise have a long history in seismology and have been exploited primarily to reduce the amount of data recorded by data logging systems to manageable levels. In the present era of inexpensive digital storage, however, such algorithms are increasingly being used to flag signal segments in continuously recorded digital data streams for subsequent processing by automatic and/or expert interpretation systems. In the course of our development of an automated, near-real-time, waveform correlation event-detection and location system (WCEDS), we have surveyed the abilities of such algorithms to enhance seismic phase arrivals in teleseismic data streams. Specifically, we have considered envelopes generated by energy transient (STA/LTA), Z-statistic, frequency transient, and polarization algorithms. The WCEDS system requires a set of input data streams that have a smooth, low-amplitude response to background noise and seismic coda and that contain peaks at times corresponding to phase arrivals. The algorithm used to generate these input streams from raw seismograms must perform well under a wide range of source, path, receiver, and noise scenarios. Present computational capabilities allow the application of considerably more robust algorithms than have been historically used in real time. However, highly complex calculations can still be computationally prohibitive for current workstations when the number of data streams become large. While no algorithm was clearly optimal under all source, receiver, path, and noise conditions tested, an STA/LTA algorithm incorporating adaptive window lengths controlled by nonstationary seismogram spectral characteristics was found to provide an output that best met the requirements of a global correlation-based event-detection and location system.


2021 ◽  
Author(s):  
Christos Papoutsellis ◽  
Matthieu Mercier ◽  
Nicolas Grisouard

<p>We model internal tides generated by the interaction of a barotropic tide with variable topography. For the barotropic part, an asymptotic solution valid over the variable topography is considered. The resulting non-uniform ambient flow is used as a prescribed barotropic forcing for the baroclinic equations (linearized, non-hydrostatic, Euler equations within the Boussinesq approximation).</p><p>The internal-tide generation problem is reformulated by means of a Coupled-Mode System (CMS) based on the decomposition of the baroclinic stream function in terms of vertical basis functions that consistently satisfy the bottom boundary condition. The proposed CMS is solved numerically with a finite difference scheme and shows good convergence properties, providing efficient calculations of internal tides due to 2D topographies of arbitrary height and slope. We consider several seamounts and shelf profiles and perform calculations for a wide range of heights and slopes. Our results are compared against existing analytical estimates on the far-field energy flux in order to examine the limit of validity of common simplifications (Weak Topography Approximation, Knife edge). For subcritical cases, local extrema of the energy flux exist for different heights. Non-radiating topographies are also identified for some profiles of large enough heights. For supercritical cases, the energy flux is in general an increasing function with increasing height and criticality, and does not compare well against analytical results for very steep idealized topographies. The effect of the adjusted barotropic tide in the energy flux and the local properties of the baroclinic field is investigated through comparisons with other semi-analytical methods based on a uniform barotropic tide (Green’s function approach).  A method for estimating the sea-surface signature of internal tides is also provided.</p>


1983 ◽  
Vol 73 (1) ◽  
pp. 97-108
Author(s):  
E. Del Pezzo ◽  
F. Ferulano ◽  
A. Giarrusso ◽  
M. Martini

abstract The model developed by Aki and Chouet for the coda wave generation and propagation has been used to calculate the quality factor Q for the zone of the Aeolian Islands, southern Italy, in the frequency range of 1 to 12 Hz, and the scaling properties of the seismic spectrum in the magnitude range of 0.4 to 4.7. The Q found for the Aeolian area has a frequency dependence of the form Q = qfv. The absolute values of Q seem to be dependent on the station and location of the seismic events, confirming the strong lateral heterogeneities in the geological structure beneath the Aeolian Arc. A temporal variation has been noted in the Q calculated at Vulcano station (VPL) in a period of 3 weeks soon after the occurrence of a main shock of ML = 5.5 located near the station. The scaling behavior of this sequence is similar to that obtained in two areas of California and one portion of Japan, with a corner frequency that remains constant with an increasing seismic moment between magnitudes 1 and 4. It differs substantially from the scaling properties of the Hawaian earthquakes that show a linear pattern, without an increase of the stress drop with magnitude. The fact that Vulcano is an active volcano seems not to influence the scaling properties of the seismic sequence localized very near it. It probably indicates that the aftershocks used for calculating the scaling law are generated out of the volcanic complex Lipari-Vulcano, in a zone with a good capability of accumulating the stress.


2019 ◽  
Author(s):  
Ying Li ◽  
Manabu Shiraiwa

Abstract. Secondary organic aerosols (SOA) account for a substantial fraction of air particulate matter and SOA formation is often modeled assuming rapid establishment of gas-particle equilibrium. Here, we estimate the characteristic timescale for SOA to achieve gas−particle equilibrium under a wide range of temperatures and relative humidities using a state-of-the-art kinetic flux model. Equilibration timescales were calculated by varying particle phase state, size, mass loadings, and volatility of organic compounds. Model simulations suggest that the equilibration timescale for semi-volatile compounds is on the order of seconds or minutes for most conditions in the planetary boundary layer, but it can be longer than one hour if particles adopt glassy or amorphous solid states with high glass transition temperature at low relative humidity. In the free troposphere with lower temperatures it can be longer than hours or days even at moderate or relatively high RH due to kinetic limitations of bulk diffusion in highly viscous particles. The timescale of partitioning of low-volatile compounds is shorter compared to semi-volatile compounds, as it is largely determined by condensation sink due to very slow re-evaporation. These results provide critical insights into thermodynamic or kinetic treatments of SOA partitioning for accurate predictions of gas- and particle-phase concentrations of semi-volatile compounds in regional and global chemical transport models.


2005 ◽  
Vol 44 (6) ◽  
pp. 789-803 ◽  
Author(s):  
Jordi Badosa ◽  
Josep-Abel González ◽  
Josep Calbó ◽  
Michiel van Weele ◽  
Richard L. McKenzie

Abstract To perform a climatic analysis of the annual UV index (UVI) variations in Catalonia, Spain (northeast of the Iberian Peninsula), a new simple parameterization scheme is presented based on a multilayer radiative transfer model. The parameterization performs fast UVI calculations for a wide range of cloudless and snow-free situations and can be applied anywhere. The following parameters are considered: solar zenith angle, total ozone column, altitude, aerosol optical depth, and single-scattering albedo. A sensitivity analysis is presented to justify this choice with special attention to aerosol information. Comparisons with the base model show good agreement, most of all for the most common cases, giving an absolute error within ±0.2 in the UVI for a wide range of cases considered. Two tests are done to show the performance of the parameterization against UVI measurements. One uses data from a high-quality spectroradiometer from Lauder, New Zealand [45.04°S, 169.684°E, 370 m above mean sea level (MSL)], where there is a low presence of aerosols. The other uses data from a Robertson–Berger-type meter from Girona, Spain (41.97°N, 2.82°E, 100 m MSL), where there is more aerosol load and where it has been possible to study the effect of aerosol information on the model versus measurement comparison. The parameterization is applied to a climatic analysis of the annual UVI variation in Catalonia, showing the contributions of solar zenith angle, ozone, and aerosols. High-resolution seasonal maps of typical UV index values in Catalonia are presented.


1984 ◽  
Vol 47 (2) ◽  
pp. 219-224 ◽  
Author(s):  
M. Castellano ◽  
E. Pezzo ◽  
G. Natale ◽  
A. Zollo

Sign in / Sign up

Export Citation Format

Share Document