Working Document on the Risk Assessment of Secondary Metabolites of Microbial Biocontrol Agents

2018 ◽  
Author(s):  
2008 ◽  
Vol 19 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Maurizio Vurro ◽  
Francesca Casella

Author(s):  
Simranjeet Singh ◽  
Vijay Kumar ◽  
Shivika Datta ◽  
Satyender Singh ◽  
Daljeet Singh Dhanjal ◽  
...  

2019 ◽  
Vol 7 (9) ◽  
pp. 314 ◽  
Author(s):  
Manel Cheffi ◽  
Ali Chenari Bouket ◽  
Faizah N. Alenezi ◽  
Lenka Luptakova ◽  
Marta Belka ◽  
...  

Oomycete and fungal pathogens, mainly Phytophthora and Fusarium species, are notorious causal agents of huge economic losses and environmental damages. For instance, Phytophthora ramorum, Phytophthora cryptogea, Phytophthora plurivora and Fusarium solani cause significant losses in nurseries and in forest ecosystems. Chemical treatments, while harmful to the environment and human health, have been proved to have little or no impact on these species. Recently, biocontrol bacterial species were used to cope with these pathogens and have shown promising prospects towards sustainable and eco-friendly agricultural practices. Olive trees prone to Phytophthora and Fusarium disease outbreaks are suitable for habitat-adapted symbiotic strategies, to recover oomycetes and fungal pathogen biocontrol agents. Using this strategy, we showed that olive trees-associated microbiome represents a valuable source for microorganisms, promoting plant growth and healthy benefits in addition to being biocontrol agents against oomycete and fungal diseases. Isolation, characterization and screening of root microbiome of olive trees against numerous Phytophthora and other fungal pathogens have led to the identification of the Bacillus velezensis OEE1, with plant growth promotion (PGP) abilities and strong activity against major oomycete and fungal pathogens. Phylogenomic analysis of the strain OEE1 showed that B. velezensis suffers taxonomic imprecision that blurs species delimitation, impacting their biofertilizers’ practical use. Genome mining of several B. velezensis strains available in the GenBank have highlighted a wide array of plant growth promoting rhizobacteria (PGPR) features, metals and antibiotics resistance and the degradation ability of phytotoxic aromatic compounds. Strain OEE1 harbours a large repertoire of secreted and volatile secondary metabolites. Rarefaction analysis of secondary metabolites richness in the B. velezenis genomes, unambiguously documented new secondary metabolites from ongoing genome sequencing efforts that warrants more efforts in order to assess the huge diversity in the species. Comparative genomics indicated that B. velezensis harbours a core genome endowed with PGP features and accessory genome encoding diverse secondary metabolites. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of OEE1 Volatile Organic Compounds (VOCs) and Liquid Chromatography High Resolution Mas Spectrometry (LC-HRMS) analysis of secondary metabolites identified numerous molecules with PGP abilities that are known to interfere with pathogen development. Moreover, B. velezensis OEE1 proved effective in protecting olive trees against F. solani in greenhouse experiments and are able to inhabit olive tree roots. Our strategy provides an effective means for isolation of biocontrol agents against recalcitrant pathogens. Their genomic analysis provides necessary clues towards their efficient implementation as biofertilizers.


1999 ◽  
Vol 55 (3) ◽  
pp. 340-342 ◽  
Author(s):  
David K Rodham ◽  
Youlin Wang ◽  
John B Cantwell ◽  
Peter D Winn ◽  
Jill Foundling

Author(s):  
Monica Höfte ◽  

Most Pseudomonas biocontrol strains are associated with the rhizosphere of plants, where they control soil pathogens by antibiosis or competition, and leaf pathogens via induced systemic resistance. Genome mining and the division of the vastly heterogeneous genus Pseudomonas in phylogenomic (sub)groups has clarified the relation between biocontrol characteristics and phylogeny. Based on their activity, Pseudomonas biocontrol strains come in three types. A first type, represented by P. chlororaphis, P. protegens, P. corrugata and P. aeruginosa (sub)group strains, produces an arsenal of secondary metabolites with broad antimicrobial activity. The second type is found in the P. putida, P. fluorescens, P. koreensis, P. mandelii, and P. gessardii (sub)group. The spectrum of biocontrol properties of these strains is less diverse and involves siderophores and cyclic lipopeptides. The third type colonizes above-ground plant parts. Strains from this type mainly belong to the P. syringae group and are used to control postharvest pathogens. This chapter starts with recent advances in Pseudomonas taxonomy and a summary of its most important biocontrol traits. It then provides an overview of the most important Pseudomonas groups and subgroups harboring biocontrol strains. Examples of well-characterized and representative biocontrol strains show the links between phylogeny, ecology and biocontrol traits. The chapter concludes by reviewing commercially-available biocontrol strains.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2424
Author(s):  
Lanfang Wei ◽  
Jun Yang ◽  
Waqar Ahmed ◽  
Xinying Xiong ◽  
Qi Liu ◽  
...  

Clubroot disease caused by the obligate parasite Plasmodiophora brassicae is a serious threat to cabbage production worldwide. Current clubroot control primarily relies on a fungicide, but this has a negative impact on the environment and the use of a single biocontrol agent cannot efficiently control the disease. Thus, the combined application of different biocontrol agents has been proposed as a promising alternative. In this study, we used bacterial biocontrol agents as a co-culture (inter-genus and intra-genus) and mono-culture to mitigate the clubroot disease of Chinese cabbage. We evaluated their biocontrol effect and plant growth promoter (PGP) traits in in vitro and in vivo experiments. This study revealed that the inter-genus bacterial co-culture significantly suppresses the incidence of clubroot disease and enhances plant growth compared with intra-genus and mono-culture. In pairwise interaction, we observed that Bacillus cereus BT-23 promotes the growth of Lysobacter antibioticus 13-6 (inter-genus bacterial co-culture), whereas L. capsici ZST1-2 and L. antibioticus 13-6 (intra-genus microbial co-culture) are antagonists to each other. Furthermore, a total of 5575 metabolites, 732 differentially expressed metabolites (DEMs), and 510 unique metabolites were detected through the LC-MS/MS technique in the bacterial co-culture. The number of unique metabolites in inter-genus bacterial co-culture (393 metabolites) was significantly higher than in the intra-genus bacterial co-culture (117 metabolites). Further analysis of DEMs showed that the DEMs were mainly involved in four kinds of metabolism pathways, i.e., carbohydrate metabolism, amino metabolism, nucleotide metabolism, and metabolism of cofactors and vitamins. The contents of some secondary metabolites with biocontrol activity and plant growth-promoting functions were increased in inter-genus bacterial co-culture, indicating that inter-genus bacterial co-culture has a solid potential to suppress clubroot disease. We conclude that the inter-genus bacterial interaction changes the community metabolism and improves several secondary metabolites functions with respect to disease control and PGP ability.


Sign in / Sign up

Export Citation Format

Share Document