scholarly journals On the complex q-Appell polynomials

Author(s):  
Thomas Ernst

The purpose of this article is to generalize the ring of \(q\)-Appell polynomials to the complex case. The formulas for \(q\)-Appell polynomials thus appear again, with similar names, in a purely symmetric way. Since these complex \(q\)-Appell polynomials are also \(q\)-complex analytic functions, we are able to give a first example of the \(q\)-Cauchy-Riemann equations. Similarly, in the spirit of Kim and Ryoo, we can define \(q\)-complex Bernoulli and Euler polynomials. Previously, in order to obtain the \(q\)-Appell polynomial, we would make a \(q\)-addition of the corresponding \(q\)-Appell number with \(x\). This is now replaced by a \(q\)-addition of the corresponding \(q\)-Appell number with two infinite function sequences \(C_{\nu,q}(x,y)\) and \(S_{\nu,q}(x,y)\) for the real and imaginary part of a new so-called \(q\)-complex number appearing in the generating function. Finally, we can prove \(q\)-analogues of the Cauchy-Riemann equations.

Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1339 ◽  
Author(s):  
Dojin Kim

In this paper, complex Appell polynomials and their degenerate-type polynomials are considered as an extension of real-valued polynomials. By treating the real value part and imaginary part separately, we obtained useful identities and general properties by convolution of sequences. To justify the obtained results, we show several examples based on famous Appell sequences such as Euler polynomials and Bernoulli polynomials. Further, we show that the degenerate types of the complex Appell polynomials are represented in terms of the Stirling numbers of the first kind.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tabinda Nahid ◽  
Mahvish Ali

Abstract The present work deals with the mathematical investigation of some generalizations of Bessel functions. The main motive of this paper is to show that the generating function can be employed efficiently to obtain certain results for special functions. The complex form of Bessel functions is introduced by means of the generating function. Certain enthralling properties for complex Bessel functions are investigated using the generating function method. By considering separately the real and the imaginary part of complex Bessel functions, we get respectively cosine-Bessel functions and sine-Bessel functions for which several novel identities and Jacobi–Anger expansions are established. Also, the generating function of degenerate Bessel functions is investigated and certain novel identities are obtained for them. A hybrid form of degenerate Bessel functions, namely, of degenerate Fubini–Bessel functions, is constructed using the replacement technique. Finally, the explicit forms of the real and the imaginary part of complex Bessel functions are established by a hypergeometric approach.


Author(s):  
Thomas Ernst

AbstractWe study q-analogues of three Appell polynomials, the H-polynomials, the Apostol-Bernoulli and Apostol-Euler polynomials, whereby two new q-difference operators and the NOVA q-addition play key roles. The definitions of the new polynomials are by the generating function; like in our book, two forms, NWA and JHC are always given together with tables, symmetry relations and recurrence formulas. It is shown that the complementary argument theorems can be extended to the new polynomials as well as to some related polynomials. In order to find a certain formula, we introduce a q-logarithm. We conclude with a brief discussion of multiple q-Appell polynomials.


1946 ◽  
Vol 13 (4) ◽  
pp. A276-A280
Author(s):  
J. P. Den Hartog ◽  
J. P. Li

Abstract An extension of Holzer’s method is given for the case of damped systems of discreet as well as of uniformly distributed inertias and flexibilities. For discreet systems the modification in the Holzer table consists of replacing I by I − jc0/ω, and of replacing k by k + jωci, whereby most numbers in the tables become complex. The meaning of the real part of any complex number is that quantity which is in time-phase with the motion at the free end, while the imaginary part is 90 deg out of time-phase with that motion. For distributed systems the results are given by Equations [12] and [12a] for a free forward end; by Equations [13] and [13a] for a damped forward end, while the letters a and b appearing in these results are defined by Equations [8] and [8a].


2020 ◽  
Vol 72 (3) ◽  
pp. 425-426
Author(s):  
A. V. Pokrovskii

UDC 517.537.38 We prove that each totally disconnected closed subset E of a domain G in the complex plane is removable for analytic functions f ( z ) defined in G ∖ E and such that for any point z 0 ∈ E the real or imaginary part of f ( z ) vanishes at z 0 .  


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 679 ◽  
Author(s):  
Pierpaolo Natalini ◽  
Paolo Emilio Ricci

In a recent article we noted that the first and second kind Cebyshev polynomials can be used to separate the real from the imaginary part of the Appell polynomials. The purpose of this article is to show that the same classic polynomials can also be used to separate the even part from the odd part of the Appell polynomials and of the Appell–Bessel functions.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Subuhi Khan ◽  
Shahid Ahmad Wani

Abstract In this article, an operational definition, generating function, explicit summation formula, determinant definition and recurrence relations of the generalized families of Hermite–Appell polynomials are derived by using integral transforms and some known operational rules. An analogous study of these results is also carried out for the generalized forms of the Hermite–Bernoulli and Hermite–Euler polynomials.


2020 ◽  
Author(s):  
Andrea Conte

This paper shows how the time dilation due to motion, calculated normally using the Lorentz factor, can be encoded in the real part of a complex number by using the Euler's formula. The imaginary part of this complex number will contain the velocity. It also shows how the time dilation due to gravitational attraction can be encoded using the same formula. A combination of time dilation and gravitational time dilation is presented using this formula. The magnitude of this complex number represents the constancy of the speed of light.


Sign in / Sign up

Export Citation Format

Share Document