scholarly journals Static Deformation due to a Long Tensile Fault of Finite Width in an Isotropic Half-Space Welded with an Orthotropic Half-Space

Author(s):  
Yogita Godara ◽  
Ravinder Kumar Sahrawat ◽  
Mahabir Singh

Closed-form analytical expressions for displacements and stresses at any point of a two-phase medium consisting of a homogeneous, isotropic, perfectly elastic half-space in welded contact with a homogeneous, orthotropic, perfectly elastic half-space caused by a tensile fault of finite width located at an arbitrary distance from the interface in the isotropic half-space are obtained. The Airy stress function approach is used to obtain the expressions for the stresses and displacements. The vertical tensile fault is considered graphically. The variations of the displacements with the distance from the fault and with depth for various cases have been studied graphically. Also horizontal and vertical displacement of the surface are presented graphically.

2014 ◽  
Vol 638-640 ◽  
pp. 2082-2091
Author(s):  
John C.C. Lu ◽  
Feng Tsai Lin

Thermoelastic response due to a line heat source is analog to poroelastic reaction caused by a fluid line sink. In this study, the strata are modeled as a thermoelastic or poroelastic half space bounded by horizontal surface in the mathematical model. Thermomechanics and poromechanics are applied on the formulation of basic governing equations, and an analogy is drawn to show the similarity. Using Hankel transform technique and approaching symbolic integral through Mathematica, the closed-form solutions of the horizontal and vertical displacements due to a fluid line sink are obtained. The displacements produced by the line heat source are described through analog quantities between thermoelasticity and poroelasticity. The solutions can be applied to dewater operations and build waste repository.


1973 ◽  
Vol 40 (1) ◽  
pp. 251-256 ◽  
Author(s):  
D. L. Clements

The problem of an inflated cylindrical tire of infinite length and constant finite width steadily rolling over the surface of an anisotropic elastic half space is examined. The influence of an applied force, acting along the axis of the cylinder, on the width of the region of slip at each end of the tire is determined. In particular, it is shown numerically that when a material exhibits certain anisotropy the presence of an axial force can considerably reduce the width of the zones of slip.


1996 ◽  
Vol 63 (2) ◽  
pp. 245-251 ◽  
Author(s):  
J. R. Barber

Closed-form expressions are obtained for the normal surface displacements due to a normal point force moving at constant speed over the surface of an elastic half-space. The Smirnov-Sobolev technique is used to reduce the problem to a linear superposition of two-dimensional stress and displacement fields.


2013 ◽  
Vol 405-408 ◽  
pp. 275-284 ◽  
Author(s):  
John C.C. Lu

The study derives the closed-form solutions of the long-term elastic consolidation subjected to the fluid line sink in a homogeneous isotropic elastic half space aquifer. The Hankel transform in a cylindrical coordinate system is employed to develop the analytical elastic solutions. Derivations of governing equations are based on the mathematical model of Biots theory of poro-mechanics, and the half space aquifer is modelled as a saturated porous stratum which is bounded by a horizontal surface. The total stresses of the aquifer obey Newtons second law and Hookes law. Besides, the mass conservation and Darcys law are introduced to formulate the governing equations of pore fluid flow. The software Mathematica is used to complete the symbolic integrations and obtain the closed-form solutions. The solutions can be applied in dewatering operations of compressible aquifer.


1973 ◽  
Vol 40 (2) ◽  
pp. 478-484 ◽  
Author(s):  
M. A. Oien

The response of a smooth Bernoulli-Euler plate of finite width and infinite length in contact with an elastic half space to incident plane harmonic waves propagating normally to the infinite axis of the plate is considered. Upon expanding the motion of the plate in a series of vibrational modes, approximate solutions for the response of the plate and the elastic half space are obtained separately using the Bubnov-Galerkin method. Numerical results are presented illustrating the general nature of the response of the plate and showing that individual vibrational modes of the plate are not excited to resonance.


2014 ◽  
Vol 10 (3) ◽  
pp. 304-327 ◽  
Author(s):  
V. Kobelev

Purpose – The purpose of this paper is to derive the exact analytical expressions for torsion and bending creep of rods with the Norton-Bailey, Garofalo and Naumenko-Altenbach-Gorash constitutive models. These simple constitutive models, for example, the time- and strain-hardening constitutive equations, were based on adaptations for time-varying stress of equally simple models for the secondary creep stage from constant load/stress uniaxial tests where minimum creep rate is constant. The analytical solution is studied for Norton-Bailey and Garofalo laws in uniaxial states of stress. Design/methodology/approach – The creep component of strain rate is defined by material-specific creep law. In this paper the authors adopt, following the common procedure Betten, an isotropic stress function. The paper derives the expressions for strain rate for uniaxial and shear stress states for the definite representations of stress function. First, in this paper the authors investigate the creep for the total deformation that remains constant in time. Findings – The exact analytical expressions giving the torque and bending moment as a function of the time were derived. Research limitations/implications – The material isotropy and homogeneity preimposed. The secondary creep phase is considered. Practical implications – The results of creep simulation are applied to practically important problem of engineering, namely for simulation of creep and relaxation of helical and disk springs. Originality/value – The new, closed form solutions with commonly accepted creep models allow a deeper understanding of such a constitutive model's effect on stress and deformation and the implications for high temperature design. The application of the original solutions allows accurate analytic description of creep and relaxation of practically important problems in mechanical engineering. Following the procedure the paper establishes closed form solutions for creep and relaxation in helical, leaf and disk springs.


Geophysics ◽  
1960 ◽  
Vol 25 (6) ◽  
pp. 1195-1202 ◽  
Author(s):  
R. W. Fredricks ◽  
L. Knopoff

The reflection of a time‐harmonic Rayleigh wave by a high impedance obstacle in shearless contact with an elastic half‐space of lower impedance is examined theoretically. The potentials are found by a function—theoretic solution to dual integral equations. From these potentials, a “reflection coefficient” is defined for the surface vertical displacement in the Rayleigh wave. Results show that the reflected wave is π/2 radians out of phase with the incident wave for arbitrary Poisson’s ratio. The modulus of the “reflection coefficient” depends upon Poisson’s ratio, and is evaluated as [Formula: see text] for σ=0.25.


Sign in / Sign up

Export Citation Format

Share Document