On Solution of Singular Integral Equations by Operator Method

2019 ◽  
Vol 14 ◽  
pp. 41-48
Author(s):  
Najem A. Mohammad ◽  
Mohammad Shami Hasso

In this paper, we study the exact solution of singular integral equations using two methods, including Adomian Decomposition Method and Elzaki Transform Method. We propose an analytical method for solving singular integral equations and system of singular integral equations, and have some goals in our paper related to suggested technique for solving singular integral equations. The primary goal is for giving analytical solutions of such equations with simple steps, another goal is to compare the suggested method with other methods used in this study.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Manar A. Alqudah ◽  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad

In this attempt, we introduce a new technique to solve main generalized Abel’s integral equations and generalized weakly singular Volterra integral equations analytically. This technique is based on the Adomian decomposition method, Laplace transform method, and Ψ-Riemann–Liouville fractional integrals. Finally, some examples are proposed and they illustrate the rapidness of our new technical method.


2021 ◽  
Vol 7 (2) ◽  
pp. 2044-2060
Author(s):  
Maysaa Al-Qurashi ◽  
◽  
Saima Rashid ◽  
Fahd Jarad ◽  
Madeeha Tahir ◽  
...  

<abstract><p>In this research, the Shehu transform is coupled with the Adomian decomposition method for obtaining the exact-approximate solution of the plasma fluid physical model, known as the Zakharov-Kuznetsov equation (briefly, ZKE) having a fractional order in the Caputo sense. The Laplace and Sumudu transforms have been refined into the Shehu transform. The action of weakly nonlinear ion acoustic waves in a plasma carrying cold ions and hot isothermal electrons is investigated in this study. Important fractional derivative notions are discussed in the context of Caputo. The Shehu decomposition method (SDM), a robust research methodology, is effectively implemented to generate the solution for the ZKEs. A series of Adomian components converge to the exact solution of the assigned task, demonstrating the solution of the suggested technique. Furthermore, the outcomes of this technique have generated important associations with the precise solutions to the problems being researched. Illustrative examples highlight the validity of the current process. The usefulness of the technique is reinforced via graphical and tabular illustrations as well as statistics theory.</p></abstract>


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Rasool Shah ◽  
Hassan Khan ◽  
Dumitru Baleanu ◽  
Poom Kumam ◽  
Muhammad Arif

AbstractIn this article, an efficient analytical technique, called Laplace–Adomian decomposition method, is used to obtain the solution of fractional Zakharov– Kuznetsov equations. The fractional derivatives are described in terms of Caputo sense. The solution of the suggested technique is represented in a series form of Adomian components, which is convergent to the exact solution of the given problems. Furthermore, the results of the present method have shown close relations with the exact approaches of the investigated problems. Illustrative examples are discussed, showing the validity of the current method. The attractive and straightforward procedure of the present method suggests that this method can easily be extended for the solutions of other nonlinear fractional-order partial differential equations.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
S. Narayanamoorthy ◽  
T. L. Yookesh

We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.


2020 ◽  
Vol 4 (1) ◽  
pp. 448-455
Author(s):  
Mulugeta Andualem ◽  
◽  
Atinafu Asfaw ◽  

Nonlinear initial value problems are somewhat difficult to solve analytically as well as numerically related to linear initial value problems as their variety of natures. Because of this, so many scientists still searching for new methods to solve such nonlinear initial value problems. However there are many methods to solve it. In this article we have discussed about the approximate solution of nonlinear first order ordinary differential equation using ZZ decomposition method. This method is a combination of the natural transform method and Adomian decomposition method.


Author(s):  
S. ABBASBANDY ◽  
T. ALLAHVIRANLOO

In this work, the Adomian decomposition(AD) method is applied to the Fuzzy system of linear Fredholm integral equations of the second kind(FFIE). First the crisp Fredholm integral equation is solved by AD method and then the crisp solution is fuzzified by extension principle. The proposed algorithm is illustrated by solving a numerical example.


Sign in / Sign up

Export Citation Format

Share Document