scholarly journals TiO2 Nanorods Prepared from Anodic Aluminum Oxide Template and their Applications in Dye-Sensitized Solar Cells

Author(s):  
Methawee Nukunudompanich ◽  
Surawut Chuangchote ◽  
Jatuporn Wootthikanokkhan ◽  
Yoshikazu Suzuki

Anodic aluminum oxide (AAO) was used as a template coupled with liquid process for synthesis of TiO2 nanorods. Immersion setting (IS) was carried out to insert a TiO2 precursor solution into AAO pore. With the calcination and NaOH treatment to remove AAO, SEM characterization revealed that TiO2 nanorods with diameter around 100-200 nm were successfully fabricated from AAO commercial templates. The synthesized nanorods mixed with commercial TiO2 nanoparticles (P-25) with a mixing ratio of 5:95 (by mass) were used as an electrode in a dye-sensitized solar cell (DSSC), The photoelectrodes made with nanorods showed a better performance than the cells used of only pristine TiO2 nanoparticles. The results from current density-voltage (J-V) characteristics of DSSCs showed that short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE) are 11.78 mA/cm2, 0.72 V, 0.55, and 4.68%, respectively. Due to the effects of one-dimensional (1-D) nanostructure, the electron expressway concept was achieved in this research.

2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Zainal Arifin ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Suyitno Suyitno ◽  
Argatya Tara Setyaji

Natural dyes have attracted much researcher’s attention due to their low-cost production, simple synthesis processes and high natural abundance. However the dye-sensitized solar cells (DSSCs) based natural dyes have higher tendency to degradation. This article reports on the enhancement of performance and stability of dye-sensitized solar cells (DSSCs) using natural dyes. The natural dyes were extracted from papaya leaves by ethanol solvent at a temperature of 50 °C. Then the extracted dyes were isolated and modified into Mg-chlorophyll using column chromatography. Mg-chlorophyll was then synthesized into Fe-chlorophyll to improve stability. The natural dyes were characterized using ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and cyclic voltammetry. The performance of DSSCs was tested using a solar simulator. The results showed the open-circuit voltage, the short-circuit current density, and the efficiency of the extracted papaya leaves-based DSSCs to be 325 mV, 0.36 mA/cm2, and 0.07%, respectively. Furthermore, the DSSCs with purified chlorophyll provide high open-circuit voltage of 425 mV and short-circuit current density of 0.45 mA/cm2. The use of Fe-chlorophyll for sensitizing the DSSCs increases the efficiency up to 2.5 times and the stability up to two times. The DSSCs with Fe-chlorophyll dyes provide open-circuit voltage, short-circuit current density, and efficiency of 500 mV, 0.62 mA/cm2, and 0.16%, respectively. Further studies to improve the current density and stability of natural dye-based DSSCs along with an improvement in the anchor between dyes and semiconducting layers are required.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Parth Bhatt ◽  
Kavita Pandey ◽  
Pankaj Yadav ◽  
Brijesh Tripathi ◽  
Manoj Kumar

This paper investigates the effect of ageing on the performance of dye-sensitized solar cells (DSCs). The electrical characterization of fresh and degraded DSCs is done under AM1.5G spectrum and the current density-voltage (J-V) characteristics are analyzed. Short circuit current density (JSC) decreases significantly whereas a noticeable increase in open circuit voltage is observed. These results have been further investigated electroanalytically using electrochemical impedance spectroscopy (EIS). An increase in net resistance results in a lower JSC for the degraded DSC. This decrease in current is mainly due to degradation of TiO2-dye interface, which is observed from light and dark J-V characteristics and is further confirmed by EIS measurements. A reduction in the chemical capacitance of the degraded DSC is observed, which is responsible for the shifting of Fermi level with respect to conduction band edge that further results in an increase of open circuit voltage for the degraded DSC. It is also confirmed from EIS that the degradation leads to a better contact formation between the electrolyte and Pt electrode, which improves the fill factor of the DSC. But the recombination throughout the DSC is found to increase along with degradation. This study suggests that the DSC should be used under low illumination conditions and around room temperature for a longer life.


Author(s):  
Jenn-Kai Tsai ◽  
Yu-Shin Tu

In this study, a high energy conversion efficient dye-sensitized solar cells (DSSC) was successfully fabricated by attaching a double anti-reflection (AR) layer which is composed of a subwavelength moth-eye structured polymethyl methacrylate (PMMA) film and a polydimethylsiloxane (PDMS) film. The efficiency is up to 6.79%. The moth-eye structured PMMA film was fabricated by using anodic aluminum oxide (AAO) template which is simple, low-cost and scalable. The nano-pattern of AAO template has been precisely reproduced onto PMMA film. The photoanode is composed of Titanium dioxide (TiO2) nanoparticles (NPs) with diameter of 25 nm deposited on the fluorine-doped tin oxide (FTO) glass substrate and the sensitizer N3. The double AR layer can effectively improve the short-circuit current density (JSC) and conversion efficiency from 14.77 to 15.79 mA/cm2 and from 6.26% to 6.79%, respectively.


2013 ◽  
Vol 650 ◽  
pp. 39-43
Author(s):  
Nursev Bilgin ◽  
Jongee Park ◽  
Abdullah Ozturk

Dye-sensitized solar cells (DSSCs) have been fabricated using a TiO2 paste composed of mixtures of 25 nm and 250 nm TiO2 particles at various ratios. A maximum energy conversion efficiency of 6.7% has been achieved using the DSSC, based on a TiO2 layer composed of 40 wt% 25 nm and 60 wt% 250 nm TiO2 particles. The short-circuit current density, open-circuit voltage, and filling factor of the cell were 12.95 mA, 0.82 V, and 0.63, respectively. The overall performance of the DSSCs based on TiO2 layers composed using a mixture of two different sized particles is much better than that of either only 25 nm or only 250 nm TiO2 particles. It is recognized that adding the larger particles to the small particles in the TiO2 paste increases the dye absorption and light scattering effects of DSSC, resulting in a higher short-circuit current density and improved energy conversion efficiency.


RSC Advances ◽  
2014 ◽  
Vol 4 (80) ◽  
pp. 42252-42259 ◽  
Author(s):  
Shengbo Zhu ◽  
Zhongwei An ◽  
Xinbing Chen ◽  
Pei Chen ◽  
Qianfeng Liu

The modification of the π-linker of cyclic thiourea functionalized dyes has a significant effect on the short-circuit current density and open-circuit voltage of dye-sensitized solar cells.


2020 ◽  
Vol 1 (8) ◽  
pp. 2964-2970
Author(s):  
Venkatesan Srinivasan ◽  
Jagadeeswari Sivanadanam ◽  
Kothandaraman Ramanujam ◽  
Mariadoss Asha Jhonsi

The inclusion of CNMs together with TiO2 enhanced the short circuit current density by 31% and power conversion efficiency (PCE) by 46% compared to the CNM-free DSSCs.


2012 ◽  
Vol 476-478 ◽  
pp. 1767-1770
Author(s):  
Yu Li Lin ◽  
Cheng Yi Hsu ◽  
Chang Lun Tai

The task of this study is to prepare the TiO2 film electrode for dye-sensitized solar cells (DSSC) on ITO PET substrate using a general jet-printer. The results were compared with that obtained using ITO glass substrate. In this study, the dispersion of TiO2 slurry was manipulated by changing the pH value of the solution to avoid agglomeration of TiO2 particles. The average TiO2 particles used in this study were measured about 130nm. The experimental results show that it has the best performance when the thickness of the TiO2 film was about 10μm. In ITO glass substrate, the measured short circuit current was about 5.03mA, the open circuit voltage was measured to be 0.65V. In ITO-PET substrate, the measured short circuit current was about 2.73mA, the open circuit voltage was measured to be 0.68V.


BIBECHANA ◽  
2015 ◽  
Vol 13 ◽  
pp. 23-28
Author(s):  
Leela Pradhan Joshi

Aluminium doped Zinc Oxide (AZO) seed layers were deposited on Fluorine doped Tin Oxide (FTO) substrates using a spin coating technique. These were then immersed in growth solutions of zinc nitrate, hexamethylenetetramine and distilled water to develop nanoplates of Zinc Oxide (ZnO). The nanostructures of ZnO grown on FTO were studied using x-ray diffraction techniques. Dye-sensitized solar cells (DSSC) were fabricated using two prepared electrodes, one of dye-loaded zinc oxide and another that was platinum coated. The electrolyte used was potassium iodide iodine solution. The performance of the assembled DSCCs was tested by drawing an IV curve. The results showed that the short circuit current and open circuit voltages were about 10 microamperes and 270 millivolts respectively.BIBECHANA 13 (2016) 23-28


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4181 ◽  
Author(s):  
Mariia Karpacheva ◽  
Vanessa Wyss ◽  
Catherine E. Housecroft ◽  
Edwin C. Constable

By systematic tuning of the components of the electrolyte, the performances of dye-sensitized solar cells (DSCs) with an N-heterocyclic carbene iron(II) dye have been significantly improved. The beneficial effects of an increased Li+ ion concentration in the electrolyte lead to photoconversion efficiencies (PCEs) up to 0.66% for fully masked cells (representing 11.8% relative to 100% set for N719) and an external quantum efficiency maximum (EQEmax) up to approximately 25% due to an increased short-circuit current density (JSC). A study of the effects of varying the length of the alkyl chain in 1-alkyl-3-methylimidazolium iodide ionic liquids (ILs) shows that a longer chain results in an increase in JSC with an overall efficiency up to 0.61% (10.9% relative to N719 set at 100%) on going from n-methyl to n-butyl chain, although an n-hexyl chain leads to no further gain in PCE. The results of electrochemical impedance spectroscopy (EIS) support the trends in JSC and open-circuit voltage (VOC) parameters. A change in the counterion from I− to [BF4]− for 1-propyl-3-methylimidazolium iodide ionic liquid leads to DSCs with a remarkably high JSC value for an N-heterocyclic carbene iron(II) dye of 4.90 mA cm−2, but a low VOC of 244 mV. Our investigations have shown that an increased concentration of Li+ in combination with an optimized alkyl chain length in the 1-alkyl-3-methylimidazolium iodide IL in the electrolyte leads to iron(II)-sensitized DSC performances comparable with those of containing some copper(I)-based dyes.


2011 ◽  
Vol 64 (7) ◽  
pp. 951 ◽  
Author(s):  
Perumal Rajakumar ◽  
Kathiresan Visalakshi ◽  
Shanmugam Ganesan ◽  
Pichai Maruthamuthu ◽  
Samuel Austin Suthanthiraraj

Synthesis of polyolefinic aromatic molecules with pyrene as the surface group, and their role as an additive in the redox couple of dye-sensitized solar cells, is described. The studies yield a promising power conversion efficiency of 5.27% with a short circuit current density of 6.50 mA cm–2, an open circuit voltage of 0.60 V, and a fill factor of 0.54 under 40 mW cm–2 simulated air mass (A.M.) 1.5 illumination. Most importantly, the photocurrent responsivity increases with an increase in the number of pyrene units on the surface.


Sign in / Sign up

Export Citation Format

Share Document