scholarly journals PROGRESSIVE COLLAPSE RESISTANCE OF STEEL FRAMED BUILDINGS UNDER EXTREME EVENTS

This paper presents experimental and theoretical investigations on progressive collapse behavior of steel framed structures subjected to an extreme load such as fire, blast and impact. A new capacity-based index is proposed to quantify robustness of structures. An energy-based theoretical model is also proposed to quantify the effect of concrete slabs on collapse resistance of structures. The experimental results show that the dynamic amplification factors of frames subject to impact or blast are much less than the conventional value of 2.0. The collapse process of frames in fire can be either static or dynamic depending on the restraint conditions and load levels. It is necessary to account for the failure time and residual strength of blast-exposed columns for assessing the collapse resistance of structures subject to explosion. Two collapse modes of steel frames under blast or impact are found: connection-induced collapse mode and column-induced collapse mode. In case of fire, a frame may collapse due to either column buckling or pulling-in effect of beams. The energy dissipation from elongation of slab reinforcement and additional resultant moment greatly contribute to the collapse resistance of structures.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Liusheng Chu ◽  
Gaoju Li ◽  
Danda Li ◽  
Jun Zhao

To investigate the progressive collapse behavior of Steel Reinforced Concrete (SRC) column-steel beam hybrid frame after the failure of key structural elements, a PQ-Fiber model for an 8-storey structure is established in ABAQUS program. Nonlinear dynamic and static pushdown analysis are carried out after the failure and removal of the bottom-middle and bottom-corner columns. Numerical results of both methods agree well with each other. Results show that SRC column-steel frame has good resistance to progressive collapse under dynamic instantaneous load. After sudden removal of a bottom middle column, the development of structural collapse exhibits two mechanisms, the beam mechanism and the catenary mechanism. When the structure is within small deformation range, the collapse resistance of the residual frame is provided by the beam bending moment capacity, which is beam mechanism. For large deformation situation, the collapse resistance is mainly provided by the beam tensile strength, which is catenary mechanism. However, with the removal of a bottom corner column, the residual structure only undergoes the beam mechanism even for large deformations. For future practical applications, the influence of the steel ratio, steel section size, and the vertical position of the removed key components are investigated through a detailed parametric study.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7157
Author(s):  
Jin Xu ◽  
Sheliang Wang ◽  
Kangning Liu ◽  
Xiaoyi Quan ◽  
Fangfei Dong

The progressive collapse of buildings induces a variety of catastrophic consequences, such as casualties and property loss over the past few decades. The corner column is more prone to abnormal load events compared to the inner column and outer column; thus, it is easier to trigger progressive collapse. By considering the effects of floor slabs and adjacent bays on progressive collapse behavior, the pseudo-static loading method was used to study the progressive collapse test of a 1/3 scaled, one story, 2 × 2-bay cast-in-place reinforced concrete frame substructure under the removal condition of a corner column. The test results show that the flexural deformation principally concentrates upon the components of a directly affected part (DAP), and compressive arch actions are observed in members of the indirectly affected part (IAP). Moreover, the slab adjacent to the removed column and periphery elements contributes great resistance to a progressive collapse.


2021 ◽  
Vol 1777 (1) ◽  
pp. 012037
Author(s):  
R Han ◽  
T Y Yin ◽  
X D Yang ◽  
Y Zhang ◽  
Y S Zhang ◽  
...  

2021 ◽  
Vol 38 ◽  
pp. 102228
Author(s):  
Gianrocco Mucedero ◽  
Emanuele Brunesi ◽  
Fulvio Parisi

2021 ◽  
pp. 136943322199249
Author(s):  
Riza Suwondo ◽  
Lee Cunningham ◽  
Martin Gillie ◽  
Colin Bailey

This study presents robustness analyses of a three-dimensional multi-storey composite steel structure under the action of multiple fire scenarios. The main objective of the work is to improve current understanding of the collapse resistance of this type of building under different fire situations. A finite element approach was adopted with the model being firstly validated against previous studies available in the literature. The modelling approach was then used to investigate the collapse resistance of the structure for the various fire scenarios examined. Different sizes of fire compartment are considered in this study, starting from one bay, three bays and lastly the whole ground floor as the fire compartment. The investigation allows a fundamental understanding of load redistribution paths and member interactions when local failure occurs. It is concluded that the robustness of the focussed building in a fire is considerably affected by the size of fire compartments as well as fire location. The subject building can resist progressive collapse when the fire occurs only in the one-bay compartment. On the other hand, total collapse occurs when fire is located in the edge three-bay case. This shows that more than one fire scenario needs to be taken into consideration to ensure that a structure of this type can survive from collapse in the worst-case situation.


2021 ◽  
pp. 103123
Author(s):  
Hua Huang ◽  
Min Huang ◽  
Wei Zhang ◽  
Mengxue Guo ◽  
Zhen Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document