scholarly journals An attitude determination method based on convected Euler angle error model for SINS/CNS integrated system

2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Jianli Li 1 ◽  
Yun Wang 1 ◽  
Pengfei Dang 1 ◽  
Zhaoxing Lu 1,2

The attitude determination method plays an important role in SINS/CNS integrated system for spacecraft. Since the misalignment angels are indirect measurements, the misalignment angle model used in the existing attitude determination method can cause transformation errors. To solve the problem, an attitude determination method based on convected Euler angle error model for SINS/CNS integrated system is proposed. The attitude error propagation is analyzed, and the convected Euler angle error model is derived. Furthermore, the state equation of SINS/CNS integrated system is established. The Kalman filter estimates and compensates the Euler angle errors. Finally, simulation results verified that the proposed method can improve the attitude accuracy compared to the conventional misalignment angle method.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shuang-biao Zhang ◽  
Xing-cheng Li ◽  
Zhong Su

Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 5975 ◽  
Author(s):  
Yanming Zhao ◽  
Gongmin Yan ◽  
Yongyuan Qin ◽  
Qiangwen Fu

In order to achieve the fine alignment of strapdown inertial navigation (SINS) under large misalignment angles, a novel filtering alignment method is proposed based on the second-order extended Kalman filter (EKF2) and adaptive fuzzy inference system (AFIS). Firstly, the quaternion is employed to represent the attitude errors of SINS. A second-order nonlinear state equation is made based on the nonlinear velocity error model and attitude error model, and the linear measurement equation is based on the velocity outputs from SINS. Then, the filtering scheme is designed based on EKF2 and AFIS. The error estimation and fine alignment can be achieved by using the proposed filtering scheme. The results of Monte Carlo Simulation show that the errors of pitch, roll and yaw misalignment angles quickly decrease to about 14″, 15″ and 7.62′ respectively in 350 s under the condition of any misalignment angles with pitch error from −40° to 40°, roll error from −40° to 40°, and yaw error from −50° to 50°. Even when the initial misalignment angles are all very large such as (80°, 120°, 170°), the proposed nonlinear alignment method still can converge normally by utilizing the adaptive fuzzy inference system (AFIS) to adjust the covariance matrix Pk/k−1. Finally, the turntable experiment was performed, and the effectiveness and superiority of the proposed method were further verified by compared with other nonlinear methods.


Author(s):  
Man Ho Choi ◽  
Robert Porter ◽  
Bijan Shirinzadeh

The performances of three attitude determination algorithms are compared in this paper. The three methods are the Complementary Filter, a Quaternion-based Kalman Filter and a Quaternion-based Gradient Descent Algorithm. An analysis of their performance based on an experimental investigation was undertaken. This paper shows that the Complementary Filter requires the least computational power; Quaternion-based Kalman Filter has the best noise filtering ability; and the Quaternion-based Gradient Descent Algorithm produced estimates with the highest accuracy. As many attitude determination methodologies make use of the quaternion rotation representation, the attitude quaternion to Euler angle singularity property has been investigated. Experiments conducted show that when Y-rotation approach the singularity position (±90°), the X-rotation drifts away from the reference input. This paper proposes the use of an imaginary set of sensor measurements to replace the original sensor measurements as the Y-rotation approaches the singularity. The proposed methodology for overcoming the conversion singularity has been experimentally verified.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 62457-62464 ◽  
Author(s):  
Lu Zhang ◽  
Wenqi Wu ◽  
Maosong Wang ◽  
Yan Guo
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Liangliang An ◽  
Liangming Wang ◽  
Ning Liu ◽  
Jian Fu

In this paper, we present a novel multisensor combinatory attitude determination method that enables high-accuracy measurement of the attitude of a high rotational speed rigid-body aircraft. We analyze the external moments of the aircraft during flight and develop the method using theoretical deductions based on the motion equations of a rigid body rotating around the centroid. The proposed method fuses the data measured from GPS, gyrometer, and magnetometer and uses the improved unscented Kalman filter (UKF) algorithm to perform filtering. First, appropriate assumptions and simplifying approximations are made for around-centroid motion equations of a rigid body according to the motion characteristics of the high rotational speed aircraft. Using these assumptions and approximations, the constraint equations between the Euler attitude angles and flight-path angle, trajectory deflection angle are derived to serve as the state equation. Second, the roll angle with error is calculated using the geomagnetic field model and the geomagnetic intensity measured by a three-axis magnetometer and then fused with the angular velocity information obtained from the gyroscope for constructing the measurement equations. Finally, the state equations are discretized using the Runge–Kutta method during the UKF prediction stage, improving the prediction accuracy. Simulation results show that the proposed method can effectively determine the attitude information of the high rotational speed aircraft, achieving high level of reliability and accuracy thanks to the combination of information from GPS, gyroscope, and magnetometer.


2012 ◽  
Vol 166-169 ◽  
pp. 3197-3201
Author(s):  
Bao Hua Li ◽  
Xi Jun Chen ◽  
Yang Pang ◽  
Bo Qi Xi

There is the long periodicity attitude error between true attitude and measurement attitude using star sensor for spacecraft attitude determination system because of aberration of light. Aberration of light occurs because the spacecraft’s velocity has a component that is perpendicular to the line traveled by the light incoming from the star. The type of aberration is analyzed and their constants of aberration are calculated in this paper. According to the constants the aberration, the correction mathematical models of parallax of aberration of light of these types of aberration are derived. The parallax of aberration of light of the recognized stars in the FOV of star sensor is calculated with the mathematical models. Then the true vectors of recognized stars at image space coordinate system of star sensor are calculated. The measurement attitude of star sensor is calculated with the true vectors of recognized stars and their vectors at celestial sphere coordinate system. The simulations show the long periodicity attitude error is corrected with the method in this paper. At last the correction of aberration of light was successfully demonstrated using two star sensors with real sky experiment in 2011.


Sign in / Sign up

Export Citation Format

Share Document