THE ABSORPTION PROPERTIES OF GOLD NANO CONJUGATED WITH PROTEINS

2020 ◽  
Vol 65 (10) ◽  
pp. 29-35
Author(s):  
Theu Luong Thi ◽  
Thi Le Anh ◽  
Huy Tran Quang ◽  
Hoc Nguyen Quang ◽  
Hoa Nguyen Minh

The absorption properties of protein-conjugated metallic nanoparticles are theoretically investigated based on the Mie theory and the core-shell model. Our numerical calculations show that this finding is in good agreement with previous experiments. We provide a better interpretation of the origin of optical peaks in the absorption spectrum of the nanoparticle complex system. Our results can be used in biomedical applications.

2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Do Thi Nga ◽  
Vu Van Huy ◽  
Chu Viet Ha

Optical properties of protein-conjugated metallic nanowires are theoretically investigated based on the Mie theory and the core-shell model. Our numerical calculations show that optical spectra of protein-conjugated nanowires can have more a maximum compared to these nanowires without biomolecules. This finding is in a good agreement with previous experiments. We provide better interpretation for the origin of optical peaks in absorption spectrum of nanowires. Our results can be used for designing biosensors and bio-detectors.


2008 ◽  
Vol 320 (6) ◽  
pp. 1106-1111 ◽  
Author(s):  
B. Lu ◽  
X.L. Dong ◽  
H. Huang ◽  
X.F. Zhang ◽  
X.G. Zhu ◽  
...  

2012 ◽  
Vol 15 (3) ◽  
pp. 171-179 ◽  
Author(s):  
Nora Mayté Sánchez-Padilla ◽  
Sagrario M. Montemayor ◽  
F.J. Rodríguez Varela

In this work, the effect of changing the stirring method and temperature on the physicochemical properties of metallic nanoparticles and core-shell nanostructures is shown. Magnetic (MS), mechanical (UT) and ultrasonic (USS) stirring are the methods of synthesis. The effect that, temperatures between 0 and 50 °C, has on the structure and particle size of Fe3O4 nanoparticles is evaluated. The results indicate that Fe3O4 prepared by the three methods presents a spinel-type crystalline structure. An increase in the synthesis temperature leads to highly crystalline powders. Afterwards, Pt is deposited by the UT method on Fe3O4 to form Fe3O4@Pt core-shell nanostructures. It is important to mention that the time used for the synthesis of the nanoparticles and the core-shell nanostructures is only one minute. The presence of Fe3O4 and Pt is confirmed by XRD and XPS. The metallic Pt phase is confirmed because the binding energy of Pt 4f 7/2 is associated to platinum in the zero-valent state. We evaluated the electrochemical activity of the Fe3O4@Pt core-shell nanostructures for the oxygen reduction reaction (ORR). The novel materials show a high electrocatalytic activity and the Koutecky-Levich analysis indicates that the reaction follows a 4 electron transfer mechanism on the Fe3O4@Pt nanostructures prepared by the three stirring processes. Moreover, the mass specific activity of the core-shell materials is as high as that obtained from the Pt-alone catalysts, suggesting that the amount of Pt in these electrodes can be reduced without decreasing the performance.


2010 ◽  
Vol 160-162 ◽  
pp. 1582-1587 ◽  
Author(s):  
Qing Chang ◽  
Hong Qiang Ru ◽  
Dao Lun Chen

Pure hydroxyapatite (HA) is brittle and it cannot be directly used for the load-bearing biomedical applications. Aim of this paper was to present a new iron-containing hydroxyapatite/titanium composites synthesized via pressureless sintering at a relatively low temperature of 1000°C using nano-sized HA powders and Ti-33%Fe mixed powders. The microstructure and composition of the new type composites were evaluated. The results showed that the uniformly distributed reinforcing particles had a unique and favorable core/shell microstructure after sintering that consisted of outer titanium and inner iron. The mechanism for the formation of the core/shell structure was discussed. The addition of iron reduced the decomposition rate of HA and the interaction between HA and titanium.


2015 ◽  
Vol 17 (4) ◽  
pp. 2531-2539 ◽  
Author(s):  
Biao Zhao ◽  
Gang Shao ◽  
Bingbing Fan ◽  
Wanyu Zhao ◽  
Rui Zhang

The core–shell Ni–SiO2 composite exhibits the best electromagnetic wave absorption in the GHz range with a minimum reflection loss of −40.0 dB, which is superior to those of Ni–TiO2 and Ni microspheres.


2013 ◽  
Vol 712-715 ◽  
pp. 229-232 ◽  
Author(s):  
Gui Mei Shi ◽  
Da Wei Lu ◽  
Yan Zhang

BiFeO3coated ferromagnetic Fe nanocapsules is synthesized by arc-discharging method. Typical HRTEM images show that the nanocapsules form in a core-shell structure. X-ray photoelectron spectrum (XPS) and X-ray diffraction (XRD) reveal that the core is ferromagnetic Fe, while the shell is BiFeO3/Bi2Fe4O9.The reflection loss R of less than -10 dB was obtained for the whole frequency within the 2-18GHz range by choosing an appropriate layer thickness between 1.0mm and 7.0mm. An optimal reflection loss of -21.5 dB was reached at 10.6 GHz with an absorber thickness of 2.0mm. It is worth noticing that the BiFeO3coated Fe nanocapsules have two absorption peaks below -10 dB at each thickness layer ranging from 4.0nm to 7.0nm, which means the composites nanocapsules absorber simultaneously are able to absorb microwaves in different band of several GHz.


2015 ◽  
Vol 17 (14) ◽  
pp. 8802-8810 ◽  
Author(s):  
Biao Zhao ◽  
Gang Shao ◽  
Bingbing Fan ◽  
Wanyu Zhao ◽  
Yajun Xie ◽  
...  

The microwave absorption properties of the core–shell Ni@rutile TiO2 composite are superior to those of the Ni@anatase TiO2 composite.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hongyan Xu ◽  
Zhenyin Hai ◽  
Jiangtao Diwu ◽  
Qiang Zhang ◽  
Libo Gao ◽  
...  

The core-shell structured Co3O4-PANI nanocomposites have been successfully prepared using an in situ polymerization method, while the core Co3O4 nanoparticles were synthesized by carbon-assisted method using degreasing cotton as a template. The obtained samples were characterized by XRD, TEM, FTIR, and XPS. The results indicated that the amorphous PANI was well covered on the surface of the spinel Co3O4 and the Co3O4-PANI with core-shell structure was formed with particle size of about 100 nm. The interfacial interaction of the core-shell nanocomposite greatly enhances the microwave absorption properties. The maximum reflection loss of Co3O4-PANI is up to −45.8 dB at 11.7 GHz with a thickness of 2.5 mm and the adsorption bandwidth with the reflection loss below −10 dB reaches 14.1 GHz ranging from 3.9 to 18 GHz when the thickness is between 2 and 5.5 mm. Therefore, the facilely synthesized and low-cost Co3O4-PANI nanocomposite with superior microwave absorption properties can be a promising nanomaterial for high efficient microwave absorption.


2020 ◽  
Author(s):  
Johan Grand ◽  
Baptiste Auguié ◽  
Eric Le Ru

Copyright © 2019 American Chemical Society. Metallic nanoparticle solutions are routinely characterized by measuring their extinction spectrum (with UV-vis spectroscopy). Theoretical predictions such as Mie theory for spheres can then be used to infer important properties, such as particle size and concentration. Here we highlight the benefits of measuring not only the extinction (the sum of absorption and scattering) but also the absorption spectrum (which excludes scattering) for routine characterization of metallic nanoparticles. We use an integrating sphere-based method to measure the combined extinction-absorption spectra of silver nanospheres and nanocubes. Using a suite of electromagnetic modeling tools (Mie theory, T-matrix, surface integral equation methods), we show that the absorption spectrum, in contrast to extinction, is particularly sensitive to shape imperfections such as roughness, faceting, or edge rounding. We study in detail the canonical case of silver nanospheres, where small discrepancies between experimental and calculated extinction spectra are still common and often overlooked. We show that this mismatch between theory and experiment becomes much more important when considering the absorption spectrum and can no longer be dismissed as experimental imperfections. We focus in particular on the quadrupolar localized plasmon resonance of silver nanospheres, which is predicted to be very prominent in the absorption spectrum but is not observed in our experiments. We consider and discuss a number of possible explanations to account for this discrepancy, including changes in the dielectric function of Ag, size polydispersity, and shape imperfections such as elongation, faceting, and roughness. We are able to pinpoint faceting and roughness as the likely causes for the observed discrepancy. A similar analysis is carried out on silver nanocubes to demonstrate the generality of this conclusion. We conclude that the absorption spectrum is in general much more sensitive to the fine details of a nanoparticle geometry, compared to the extinction spectrum. The ratio of extinction to absorption also provides a sensitive indicator of size for many types of nanoparticles, much more reliably than any observed plasmon resonance shifts. Overall, this work demonstrates that combined absorption-extinction measurements provide a much richer characterization tool for metallic nanoparticles.


2020 ◽  
Author(s):  
Johan Grand ◽  
Baptiste Auguié ◽  
Eric Le Ru

Copyright © 2019 American Chemical Society. Metallic nanoparticle solutions are routinely characterized by measuring their extinction spectrum (with UV-vis spectroscopy). Theoretical predictions such as Mie theory for spheres can then be used to infer important properties, such as particle size and concentration. Here we highlight the benefits of measuring not only the extinction (the sum of absorption and scattering) but also the absorption spectrum (which excludes scattering) for routine characterization of metallic nanoparticles. We use an integrating sphere-based method to measure the combined extinction-absorption spectra of silver nanospheres and nanocubes. Using a suite of electromagnetic modeling tools (Mie theory, T-matrix, surface integral equation methods), we show that the absorption spectrum, in contrast to extinction, is particularly sensitive to shape imperfections such as roughness, faceting, or edge rounding. We study in detail the canonical case of silver nanospheres, where small discrepancies between experimental and calculated extinction spectra are still common and often overlooked. We show that this mismatch between theory and experiment becomes much more important when considering the absorption spectrum and can no longer be dismissed as experimental imperfections. We focus in particular on the quadrupolar localized plasmon resonance of silver nanospheres, which is predicted to be very prominent in the absorption spectrum but is not observed in our experiments. We consider and discuss a number of possible explanations to account for this discrepancy, including changes in the dielectric function of Ag, size polydispersity, and shape imperfections such as elongation, faceting, and roughness. We are able to pinpoint faceting and roughness as the likely causes for the observed discrepancy. A similar analysis is carried out on silver nanocubes to demonstrate the generality of this conclusion. We conclude that the absorption spectrum is in general much more sensitive to the fine details of a nanoparticle geometry, compared to the extinction spectrum. The ratio of extinction to absorption also provides a sensitive indicator of size for many types of nanoparticles, much more reliably than any observed plasmon resonance shifts. Overall, this work demonstrates that combined absorption-extinction measurements provide a much richer characterization tool for metallic nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document