scholarly journals In vitro-in silico methods for risk assessment of organophosphate pesticides (OPs) as found in commonly consumed vegetables in Kenya

2022 ◽  
Author(s):  
Isaac Mokaya Omwenga
2016 ◽  
Vol 17 (4) ◽  
pp. 412-417 ◽  
Author(s):  
Abdur Rauf ◽  
Ilkay Erdogan Orhan ◽  
Abdulselam Ertas ◽  
Hamdi Temel ◽  
Taibi Ben Hadda ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2505
Author(s):  
Raheem Remtulla ◽  
Sanjoy Kumar Das ◽  
Leonard A. Levin

Phosphine-borane complexes are novel chemical entities with preclinical efficacy in neuronal and ophthalmic disease models. In vitro and in vivo studies showed that the metabolites of these compounds are capable of cleaving disulfide bonds implicated in the downstream effects of axonal injury. A difficulty in using standard in silico methods for studying these drugs is that most computational tools are not designed for borane-containing compounds. Using in silico and machine learning methodologies, the absorption-distribution properties of these unique compounds were assessed. Features examined with in silico methods included cellular permeability, octanol-water partition coefficient, blood-brain barrier permeability, oral absorption and serum protein binding. The resultant neural networks demonstrated an appropriate level of accuracy and were comparable to existing in silico methodologies. Specifically, they were able to reliably predict pharmacokinetic features of known boron-containing compounds. These methods predicted that phosphine-borane compounds and their metabolites meet the necessary pharmacokinetic features for orally active drug candidates. This study showed that the combination of standard in silico predictive and machine learning models with neural networks is effective in predicting pharmacokinetic features of novel boron-containing compounds as neuroprotective drugs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Kaziales ◽  
Florian Rührnößl ◽  
Klaus Richter

AbstractThe glucocorticoid receptor is a key regulator of essential physiological processes, which under the control of the Hsp90 chaperone machinery, binds to steroid hormones and steroid-like molecules and in a rather complicated and elusive response, regulates a set of glucocorticoid responsive genes. We here examine a human glucocorticoid receptor variant, harboring a point mutation in the last C-terminal residues, L773P, that was associated to Primary Generalized Glucocorticoid Resistance, a condition originating from decreased affinity to hormone, impairing one or multiple aspects of GR action. Using in vitro and in silico methods, we assign the conformational consequences of this mutation to particular GR elements and report on the altered receptor properties regarding its binding to dexamethasone, a NCOA-2 coactivator-derived peptide, DNA, and importantly, its interaction with the chaperone machinery of Hsp90.


2020 ◽  
Vol 259 ◽  
pp. 113880 ◽  
Author(s):  
Kathryn Jalink ◽  
Sammi Sham Yin Cheng ◽  
S. Ben Ireland ◽  
M.A.F. Louise Meunier

Shock ◽  
2020 ◽  
Vol 53 (5) ◽  
pp. 605-615
Author(s):  
Joseph E. Rupert ◽  
Daenique H. A. Jengelley ◽  
Teresa A. Zimmers

2009 ◽  
Vol 54 (2) ◽  
pp. 195-207 ◽  
Author(s):  
Ivonne M. C. M. Rietjens ◽  
Ans Punt ◽  
Benoît Schilter ◽  
Gabriele Scholz ◽  
Thierry Delatour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document