scholarly journals Study of Mechanical and Physical Properties of Natural Hybrid Composites

Author(s):  
I. K. Adi Atmika ◽  
I. D. G. Ary Subagia ◽  
I. W. Surata ◽  
I. N. Sutantra

2017 ◽  
Vol 25 (3) ◽  
pp. 229-236 ◽  
Author(s):  
S. Sathish ◽  
K. Kumaresan ◽  
L. Prabhu ◽  
N. Vigneshkumar

The aim of this paper is to study the effect of volume fraction on mechanical and physical properties such as tensile, flexural, impact, interlaminar shear strength, void content and water absorption of flax and bamboo fibers reinforced hybrid epoxy composites. Flax and bamboo fibers reinforced epoxy resin matrix hybrid composites have been fabricated by compression molding techniques. The hybrid composites were fabricated with different volume fraction of fibers. SEM analysis on the hybrid composite materials was performed to analyze the bonding behavior of materials and internal structure of the fractured surfaces. The effect of chemical treatment of flax and bamboo fibers was verified by FTIR analysis. The results showed that the tensile, impact, flexural and ILSS are maximum for 40:0 (flax: bamboo) hybrid composites. The void content decreased for 20:20 (flax:bamboo) composites due to tightly packed flax fiber and more compatibility towards epoxy resin.



Fibers ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 77 ◽  
Author(s):  
Muhammad Ahsan Ashraf ◽  
Mohammed Zwawi ◽  
Muhammad Taqi Mehran ◽  
Ramesh Kanthasamy ◽  
Ali Bahadar

The popularity of jute-based bio and hybrid composites is mainly due to an increase in environmental concerns and pollution. Jute fibers have low cost, high abundance, and reasonable mechanical properties. Research in all-natural fibers and composites have increased exponentially due to the environment concerns of the hazards of synthetic fibers-based composites. Jute based bio and hybrid composites have been extensively used in number of applications. Hybrid jute-based composites have enhanced mechanical and physical properties, reasonably better than jute fiber composites. A detailed analysis of jute-based bio and hybrid composites was carried out in this review. The primary aim of this review paper is to provide a critical analysis and to discuss all recent developments in jute-based composites. The content covers different aspects of jute-based composites, including their mechanical and physical properties, structure, morphology, chemical composition, fiber modification techniques, surface treatments, jute based hybrid composites, limitations, and applications. Jute-based composites are currently being used in a vast number of applications such as in textiles, construction, cosmetics, medical, packaging, automobile, and furniture industries.



2021 ◽  
Vol 2145 (1) ◽  
pp. 012036
Author(s):  
P Kongkaew ◽  
P Praneekrit ◽  
T Rudchapo ◽  
K Khampui

Abstract In this paper, the study investigates the mechanical and physical properties of water hyacinth and cogon grass fiber reinforced epoxy resin hybrid composites. Hand lay-up technique was used to fabricate the composites. Water absorption, microstructure, tensile properties, flexural properties, and impact strength tests for total fiber contents, 15 wt %, and different water hyacinth and cogon grass fiber ratios (10/0, 8/2, 6/4, 4/6, 2/8, and 0/10) were used to evaluate the investigation’s effects. The addition of water hyacinth and cogon grass fiber into epoxy improves tensile, flexural, and impact properties while decreasing water absorption, according to the findings. Using a scanning electron microscope (SEM), the microstructure of the composites was analyzed, and surface fracture behavior and the void between the fiber and matrix were observed.



Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2851
Author(s):  
Harri Junaedi ◽  
Muneer Baig ◽  
Abdulsattar Dawood ◽  
Essam Albahkali ◽  
Abdulhakim Almajid

The effect of various combinations of filler materials on the performance of polypropylene (PP)-based composites was investigated. PP in particulate form was used as the matrix. Milled short carbon fiber (SCF) micro-size, graphite nano-platelet (GNP), and titanium dioxide nanoparticles (nTiO2) were used as fillers. These fillers were incorporated in the polymer matrix to produce mono-filler (PP/SCF and PP/nanofiller) and hybrid composites. Hybrid composites consist of PP/10SCF/GNP, PP/10SCF/nTiO2, and PP/10SCF/GNP/nTiO2. The effect of the addition of SCF, GNP, and nTiO2 on PP-based composites was investigated by analyzing their morphological, mechanical, and physical properties. The addition of mono-filler to the PP matrix improved the mechanical properties of the composites when compared to the neat PP. The ultimate tensile strength (UTS), flexural modulus, flexural strength, and impact toughness of the hybrid composites with 15 wt % total loading of fillers, were higher than that of mono-filler composites with 15 wt % SCF (PP/15SCF). A maximum increase of 20% in the flexural modulus was observed in the hybrid composite with 10 wt % of SCF with the additional of 2.5 wt % GNP and 2.5 wt % nTiO2 when compared to PP/15SCF composite. The addition of 2.5 wt % nTiO2 to the 10 wt % SCF reinforced PP, resulted in increasing the strain at break by 15% when compared to the PP/10SCF composite. A scanning electron microscope image of the PP/10SCF composite with the addition of GNP improved the interfacial bonding between PP and SCF compared with PP/SCF alone. A decrease in the melt flow index (MFI) was observed for all compositions. However, hybrid composites showed a higher decrease in MFI.



2019 ◽  
Vol 27 (3) ◽  
pp. 489-497 ◽  
Author(s):  
Tamer Hamouda ◽  
Ahmed H. Hassanin ◽  
Naheed Saba ◽  
Mustafa Demirelli ◽  
Ali Kilic ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document