scholarly journals Lessons Learned In Mechanical Engineering Capstone Design Classes

2020 ◽  
Author(s):  
Kendrick Aung
2020 ◽  
Author(s):  
James Mynderse ◽  
Liping Liu ◽  
Andrew Gerhart ◽  
Robert Fletcher ◽  
Hamid Vejdani ◽  
...  

2016 ◽  
Author(s):  
Jheng-Wun Su ◽  
Zhengwei Nie ◽  
Jiamin Wang ◽  
Yuyi Lin

Author(s):  
Patrick Dumond ◽  
Eric Lanteigne

Traditionally, mechanical engineering capstone courses focused on teaching students the application of fundamental engineering theory to complex mechanical designs. Recently, there has been a transition towards experiential learning initiatives, such as prototyping, in engineering design. This paper looks at the relationship between the mechanical engineering design capstone course and a course in product design and development, which provides students with the opportunity to build prototypes of their designs, at the University of Ottawa. The importance of the traditional capstone course is considered and the implications of implementing these designs are examined. Many capstone design projects would require extensive work so that they could be implemented. A large hurdle appears to exist between analytical design and design implementation, and the term time constraints limit the complexity of designs intended for prototyping. In fact, students require many design iterations before they can build full-scale functional prototypes of their design. Therefore, we have observed that simple products work best for teaching design implementation.


Author(s):  
Clinton Lanier ◽  
William S. Janna ◽  
John I. Hochstein

An innovative capstone design course titled “Design of Fluid Thermal Systems,” involves groups of seniors working on various semester-long design projects. Groups are composed of 3 or 4 members that bid competitively on various projects. Once projects are awarded, freshmen enrolled in the “Introduction to Mechanical Engineering” course are assigned to work with the senior design teams. The senior teams (Engineering Consulting Companies) function like small consulting companies that employ co-operative education students; e.g., the freshmen. In Fall 2006, the Engineering Consulting Companies also worked with students enrolled in a Technical Editing (TE) course—“Writing and Editing in the Professions”—within the English Department. The TE students would be given reports or instructional manuals that the Mechanical Engineering (ME) students had to write as part of their capstone project, and the resulting editing of their documents would be done by these TE students. Subsequently, the ME students were given a survey and asked to comment on this experience. In addition, the TE students were also surveyed and asked to comment as well. It was concluded that the collaboration should continue for at least one more cycle, and that the TE students were more favorably inclined toward this collaboration than were the engineering students.


Author(s):  
Zbigniew M. Bzymek

The undergraduate course, Design of Machine Elements has been offered by the University of Connecticut’s Mechanical Engineering Department for many years. It has been one of the most difficult courses for students to follow and understand, and also for the faculty to teach. A strong basic knowledge of mathematics, theoretical mechanics and the mechanics of materials is required for students to take this mandatory course and to fully follow its contents. To understand entirely the concepts of Design of Machine Elements, students should be acquainted with the history of the strength of materials. Being aware of the importance of such a course the ME faculty has worked to establish outstanding structural engineering teaching and research methods, and to create a departmental nucleus of intensive development of engineering mechanics research and development. The efforts described in this paper have facilitated the teaching and learning of the mechanics of materials and consequently the Design of Machine Elements as well. To accomplish these in both teaching and practical problem solving the instructor must use the unconventional approaches and students must put a great deal of effort into learning the material. It is important for students to have a general knowledge of mathematics and theoretical mechanics, but as this is a foundation of the course, the instructor should review and clarify the specific assumptions of engineering mechanics and strength of materials. One of the pedagogical challenges to be overcome, which is faced by both instructors and students, has always been to connecting the basic theorems and application procedures of engineering mechanics to their practical use in designing machine elements and in calculating static and dynamic stresses and deformations. The concept of avoiding stress concentrations by properly designing the shapes of machine frames and parts should also be emphasized. Transforming plane stresses and deformations into three-dimensional representations and calculations should also be considered. Since machine elements are usually in motion, a dynamic approach to stress and deflection analysis is important as well. After introducing the analysis of dynamic stresses and deformations, the instructor should cover the concept of fatigue, which is the next crucial step. The instructors’ approaches and the unconventional methods they use to familiarize students with such complicated concepts are discussed in this paper. An analysis of representations of stresses and deformations and fatigue analyses of different machine elements are also considered. This paper connects to some approaches previously presented in earlier papers as well as in courses, books and discussions by outstanding engineering mechanics theoreticians, including UConn faculty, especially Dr. Roman Solecki. The paper concludes by recommending effective teaching approaches to complicated machine design concepts and summarizing the lessons learned. This paper is a companion piece to the IMECE 2015 50776 [1].


Author(s):  
Daria Kotys-Schwartz ◽  
Daniel Knight ◽  
Gary Pawlas

Innovative curriculum reforms have been instituted at several universities and colleges with the intention of developing the technical competence and professional skills of engineering students. First Year Engineering Project (FYEP), or Freshman Design courses have been integrated into undergraduate engineering curricula across the country. Many of these courses provide students with hands-on engineering opportunities early in the curriculum. Senior Capstone Design (SCD) courses are ubiquitous in engineering programs, incorporating technical knowledge and real-world problem solving. Previous research has shown that project-driven classes like FYEP and SCD increase the professional and technical design skills of students. While research into first year and senior design skills development has been more robust, scant research investigating the transformation of skills between freshman design experiences and senior design experiences has been performed. This research project investigates the longitudinal technical and professional skill development of mechanical engineering students at the University of Colorado at Boulder. An overview of First-Year Engineering Projects and the mechanical engineering Senior Capstone Design project course is detailed. Technical and professional skill objectives are discussed within the paper. Pre and post skill surveys were utilized in both First-Year Engineering Projects and the Senior Capstone Design classes. Initial results indicate that student skills deteriorate between the end of the first-year and beginning of the senior year.


2014 ◽  
Vol 1716 ◽  
Author(s):  
Bridget M. Smyser

ABSTRACTThe Capstone Design course in the Department of Mechanical Engineering at Northeastern University requires students to build a physical prototype by the end of the two semester sequence. Although students have long been required to take an introductory materials science course as part of their curriculum, there was concern that materials selection was a weakness in the design process. Beginning in Fall 2011, the CES Edupack materials selection software was introduced into the Capstone Design class. The current work means to investigate: 1) how to assess designs for effective materials selection 2) whether the new software was actually used by the student teams and 3) whether there was evidence of improved materials selection in the projects that occurred after the new software was introduced. Final capstone design reports from 10 previous terms were examined to look for evidence of systematic materials selection procedures and clear discussion of materials properties as the basis for selecting a material. References to the software were also noted. Results show that 24% of the groups used the CES Edupack software in the first three terms that the software was available. In addition, there was an increase in the number of groups that used a systematic selection process based on research into published materials properties rather than choosing materials based on rough experimentation or convenience. Finally, there has been an increase in the number of projects which consider or incorporate composites, high temperature alloys, and advanced polymers as the software has increased awareness of these options.


Sign in / Sign up

Export Citation Format

Share Document