scholarly journals Integrating The Product Realization Process Into A Mechanical Engineering Curriculum Using Desktop Manufacturing Equipment

2020 ◽  
Author(s):  
Robert Wells ◽  
Jeffrey Mountain ◽  
Donald Goddard
Author(s):  
Thenkurussi Kesavadas

Students in the mechanical engineering curriculum are rarely given opportunities for direct experience in the topics in many areas. This is especially true for the education component of the manufacturing and design curriculums. Some reading and stylized laboratory and group projects often substitute for real experience. In this paper an innovative experiential learning curriculum called Virtual Learning Factory (V-Learn-Fact) is described for teaching manufacturing and design courses. In the V-Learn-Fact curriculum, the entire class takes part in a single large project, which covers product realization from concept to final production stage. V-Learn-Fact was implemented in MAE464/564 – Manufacturing Automation course (senior elective and graduate level course) between 2006–2012. A student survey was carried out to gauge effectiveness of this curriculum. 89% of the students fully or partially agreed that the V-Learn-Fact helped them learn topics in manufacturing automation better than traditional mechanical engineering courses. Written comments also provided interesting insights.


Author(s):  
Abhishek Seth ◽  
Hai-Jun Su ◽  
Judy M. Vance

Virtual Reality (VR) technology holds promise as a virtual prototyping tool for mechanical assembly; however, several developmental challenges still need to be addressed before virtual prototyping applications can successfully be integrated into the product realization process. This paper describes the development of SHARP (System for Haptic Assembly & Realistic Prototyping), a portable VR interface for virtual assembly. SHARP uses physically-based modeling for simulating realistic part-to-part and hand-to-part interactions in virtual environments. A dual handed haptic interface for realistic part interaction using the PHANToM® haptic devices is presented. The capability of creating subassemblies enhances the application’s ability to handle a wide variety of assembly scenarios. Swept volumes are implemented for addressing maintainability issues and a network module is added for communicating with different VR systems at dispersed geographic locations. Support for various types of VR systems allows an easy integration of SHARP into the product realization process resulting in faster product development, faster identification of assembly and design issues and a more efficient and less costly product design process.


Author(s):  
Vance D. Browne

Abstract The process by which new products are brought to market — the product realization process, or PRP — can be introduced in engineering design education. In industry, the PRP has been evolving to concurrent engineering and product teams. The PRP includes components such as concept generation, analysis, manufacturing process development and customer interaction. Also, it involves the sequencing of the components and their connections which includes teamwork, project planning, meetings, reports and presentations. A capstone senior engineering project, along with classroom lectures and presentations can be structured to provide knowledge and experience to the students in many of the PRP components and the connections. This paper will give an overview of the PRP and a project/lecture structure at the author’s university. The instructor recently joined the academic ranks after years in industry with responsibility for directing product development and R&D and for leading product development teams.


Author(s):  
Siva Chaitanya Chaduvula ◽  
Adam Dachowicz ◽  
Mikhail J. Atallah ◽  
Jitesh H. Panchal

Developments in digital technology and manufacturing processes have expanded the horizon of designer innovation in creating products. In addition to this, real-time collaborative platforms help designers shorten the product development cycle by enabling collaborations with domain experts from concept generation to product realization and after-market. These collaborations are extending beyond enterprise and national boundaries, contributing to a growing concern among designers regarding the security of their sensitive information such as intellectual property (IP) and trade secrets. The source of such sensitive information leaks could be external (e.g., hacker) or internal (e.g., disgruntled employee) to the collaboration. From a designer's perspective, this fear can inhibit participation in a collaboration even though it might result in better products or services. In this paper, we aim to contextualize this evolving security space by discussing various security practices in digital domains, such as encryption and secret sharing, as well as manufacturing domains, such as physically unclonable function (PUF) and physical part watermarking for anticounterfeiting and tamper evidence purposes. Further, we classify these practices with respect to their performance against different adversarial models for different stages in product development. Such a classification can help designers to make informed decisions regarding security practices during the product realization process.


Author(s):  
Jyotirmaya Nanda ◽  
Timothy W. Simpson ◽  
Steven B. Shooter ◽  
Robert B. Stone

A flexible information model for systematic development and deployment of product families during all phases of the product realization process is crucial for product-oriented organizations. In this paper we propose a unified information model to capture, share, and organize product design contents, concepts, and contexts across different phases of the product realization process using a web ontology language (OWL) representation. Representing product families by preconceived common ontologies shows promise in promoting component sharing while facilitating search and exploration of design information over various phases and spanning multiple products in a family. Three distinct types of design information, namely, (1) customer needs, (2) product functions, and (3) product components captured during different phases of the product realization process, are considered in this paper to demonstrate the proposed information model. Product vector and function component mapping matrices along with the common ontologies are utilized for designer-initiated information exploration and aggregation. As a demonstration, six products from a family of power tools are represented in OWL DL (Description Logic) format, capturing distinct information needed during the various phases of product realization.


Sign in / Sign up

Export Citation Format

Share Document