STUDY ON ENHANCED HEAT TRANSFER FEATURES OF NANO-MAGNETIC FLUID HEAT PIPE UNDER MAGNETIC FIELD

2015 ◽  
Vol 33 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Xin-hua WANG ◽  
Yu-lin JIAO ◽  
Yong-chao NIU ◽  
Jie YANG
2012 ◽  
Vol 614-615 ◽  
pp. 245-252
Author(s):  
Yun Feng Zhang ◽  
Jian Jun An ◽  
Zheng Rong Chang

In view of the highly heat exchanger efficient of heat pipe, two vacuum heat pipes of water and Fe3O4-water were prepared and test system was designed to test the heat transfer efficiency of them when they are within and without magnetic field. The experimental results showed that the heat exchange of heat pipe with magnetic fluid was more efficient than the other one. According to the results and combine the physical properties of two kinds of refrigerant, analyze the heat transfer characteristics of the magnetic fluid in magnetic field.


Author(s):  
Giti Karimi-Moghaddam ◽  
Richard D. Gould ◽  
Subhashish Bhattacharya

In this paper, the performance of pool boiling heat transfer using a binary temperature sensitive magnetic fluid in the presence of a non-uniform magnetic field is investigated numerically. By using a binary magnetic fluid, enhanced boiling heat transfer is obtained by thermomagnetic convection without deterioration of properties of the fluid. This work is aimed at gaining a qualitative understanding the magnetic field effects on boiling heat transfer enhancement of magnetic fluids. In order to accomplish this, the boiling process and the effects of position of the external magnetic field on flow pattern and heat transfer are investigated in a 2D rectangular domain using COMSOL Multiphysics simulation software. Finally, the boiling curves for a binary temperature sensitive magnetic fluid and its base fluid (without magnetic particles) are compared for various applied heat flux magnitudes.


2010 ◽  
Vol 9 ◽  
pp. 190-193 ◽  
Author(s):  
Masaaki Motozawa ◽  
Jia Chang ◽  
Tatsuo Sawada ◽  
Yasuo Kawaguchi

Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Ali Adibnia ◽  
Hossein Afshin ◽  
Mohammad Hassan Saidi ◽  
...  

Homogenous dispersing of nanoparticles in a base fluid is an excellent way to increase the thermal performance of heat transfer devices especially Heat Pipes (HPs). As a wickless, cheap and efficient heat pipe, Pulsating Heat Pipes (PHPs) are important candidates for thermal application considerations. In the present research an Open Loop Pulsating Heat Pipe (OLPHP) is fabricated and tested experimentally. The effects of working fluid namely, water, Silica Coated ferrofluid (SC ferrofluid), and ferrofluid without surface coating of nanoparticles (ferrofluid), charging ratio, heat input, and application of magnetic field on the overall thermal performance of the OLPHPs are investigated. Experimental results show that ferrofluid has better heat transport capability relative to SC ferrofluid. Furthermore, application of magnetic field improves the heat transfer performance of OLPHPs charged with both ferrofluids.


Sign in / Sign up

Export Citation Format

Share Document