Contribution to study the effect of exhaust gas recirculation EGR on HCCI combustion mode

2017 ◽  
Vol 35 (1) ◽  
pp. 183-190 ◽  
Author(s):  
Slimane Benhorma ◽  
Mokhtar Aouissi ◽  
C. Mansour ◽  
A. Bounif
2009 ◽  
Vol 23 (9) ◽  
pp. 4295-4303 ◽  
Author(s):  
Francisco J. Jiménez-Espadafor ◽  
Miguel Torres Garcia ◽  
José A. Correa Herrero ◽  
José A. Becerra Villanueva

2020 ◽  
Author(s):  
Filipe A. Herzer ◽  
Jean L. S. Fagundez ◽  
Mario E. S. Martins ◽  
Nina P. G. Salau

Author(s):  
P G Aleiferis ◽  
A G Charalambides ◽  
Y Hardalupas ◽  
A M K P Taylor ◽  
Y Urata

A high-swirl low-compression-ratio, optically accessed engine that was able to produce a stratified charge was used to investigate the differences in homogeneous charge compression ignition (HCCI) combustion and in the propagation of the autoignition front between a non-stratified and a stratified charge. Natural-light images were acquired using a fast camera to visualize HCCI combustion and to quantify the location of autoignition, the apparent ‘propagation speed’ of the autoignition front, and its variations between closed-valve injection timing (leading to a nearly homogeneous charge) and open-valve injection timing (leading to a strongly axially stratified charge), owing to temperature inhomogeneities that were introduced by utilizing a camshaft which allowed 40 per cent internal exhaust gas recirculation (iEGR). Experimental results show that, in the case without exhaust gas recirculation (EGR) and with closed-valve injection timing, autoignition started under the primary intake valve near the cylinder wall, while, in the case without EGR and with open-valve injection timing, autoignition started between the exhaust valve and the secondary intake valve, closer to the centre of the piston. With 40 per cent iEGR and closed-valve injection timing, autoignition started between the exhaust valve and the primary intake valve near the cylinder wall. These differences can be explained by the difference in the location of hot gases due to the injection timing or due to iEGR. Finally, without EGR, a ‘uniform’ autoignition front of HCCI combustion from the original sites of autoignition was observed compared with a more ‘random development’ of the autoignition front with 40 per cent iEGR. Strong local inhomogeneities (possibly a very rich mixture at a low temperature) could be present with 40 per cent iEGR.


Author(s):  
Haoyue Zhu ◽  
Stanislav V. Bohac ◽  
Zhen Huang ◽  
Dennis N. Assanis

The soot/nitric oxides (NOx) trade-off of diesel, biodiesel, and biodiesel–ethanol in a moderate exhaust gas recirculation (EGR) premixed low temperature combustion (LTC) mode is investigated in this study. Compared to diesel, biodiesel demonstrates poorer spray behavior and shorter ignition delay, but its oxygen content results in less soot. Blending ethanol into biodiesel enhances spray behavior, prolongs ignition delay, and further increases fuel oxygen fraction, resulting in a larger reduction in soot. In the moderate EGR premixed low temperature combustion mode, an obvious soot/NOx trade-off is demonstrated with diesel fuel. The soot/NOx trade-off is improved by biodiesel fuel and defeated by the biodiesel–ethanol blend. Low soot, low NOx, and high combustion efficiency are achieved with the biodiesel–ethanol blend and proper EGR rate.


Sign in / Sign up

Export Citation Format

Share Document