scholarly journals Optimal Tuning of Fractional Order Proportional-Integral-Derivative Controller for Wire Feeder System Using Ant Colony Optimization

2020 ◽  
Vol 53 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Noureddine Hamouda ◽  
Badreddine Babes ◽  
Cherif Hamouda ◽  
Sami Kahla ◽  
Thomas Ellinger ◽  
...  
Author(s):  
Erhan Yumuk ◽  
Müjde Güzelkaya ◽  
İbrahim Eksin

In this study, we deal with systems that can be represented by single fractional order pole models and propose an integer order proportional–integral/proportional–integral–derivative controller design methodology for this class. The basic principle or backbone of the design methodology of the proposed controller relies on using the inverse of the fractional model and then approximating this fractional controller transfer function by a low integer order model using Oustaloup filter. The emerging integer order controller reveals itself either in pre-filtered proportional–integral or proportional–integral–derivative form by emphasizing on the dominancy concept of pole-zero configuration. Parameters of the proposed controllers depend on the parameters of the single fractional order pole model and the only free design parameter left is the overall controller gain. This free design parameter is determined via some approximating functions relying on an optimization procedure. Simulation results show that the proposed controller exhibits either satisfactory or better results with respect to some performance indices and time domain criteria when they are compared to classical integer order proportional–integral–derivative and fractional order proportional–integral–derivative controllers. Moreover, the proposed controller is applied to real-time liquid level control system. The application results show that the proposed controller outperforms the other controllers.


2016 ◽  
Vol 40 (2) ◽  
pp. 550-564 ◽  
Author(s):  
Mustafa Sinasi Ayas ◽  
Ismail Hakki Altas ◽  
Erdinc Sahin

Human–robot interaction is inherently available and used actively in ankle rehabilitation robots. This interaction causes disturbances to be counteracted on the rehabilitation robots in order to reduce the side effects. This paper presents a fractional order proportional–integral–derivative controller to improve the trajectory tracking ability of a developed 2-degree of freedom parallel ankle rehabilitation robot subject to external disturbances. The parameters of the controller are optimally tuned by using both the cuckoo search algorithm and the particle swarm optimization algorithm. A traditional proportional–integral–derivative controller, which is also tuned using both of the algorithms, is designed to test the performance of the fractional order proportional–integral–derivative controller. The experimental results show that the optimally tuned FOPID controller improves the tracking performance of the ankle rehabilitation robot subject to external disturbances significantly and decreases the steady-state tracking errors compared to the optimally tuned PID controller.


2018 ◽  
Vol 51 (7-8) ◽  
pp. 321-335 ◽  
Author(s):  
K Prathibanandhi ◽  
R Ramesh

This paper presented the brushless direct current motor torque ripple reduction based on the speed and torque control using hybrid technique. The dynamic behavior of the brushless direct current motor is analyzed in terms of the parameters such as the speed, current, back electromotive force and torque. Based on the parameters, the motor speed is controlled and minimized the torque ripples. For controlling the speed of the brushless direct current motor is utilized the fractional-order proportional–integral–derivative controller for generating the optimal control pulses. With the use of fractional-order proportional–integral–derivative controller, the optimal gain parameters are needed to reduce the torque ripples and control the speed of brushless direct current motor. By utilizing the hybrid technique, the gain parameters are utilized to analyze the optimal gain parameters of fractional-order proportional–integral–derivative controller. The hybrid technique is the combination of adaptive neuro-fuzzy inference system with firefly algorithm. The proposed strategy is simple in structure and robust to reduce the complexities of the mathematical computations. Initially, the nature inspired optimization algorithm of firefly algorithm is analyzed for finding the error function. In addition, the efficient adaptive neuro-fuzzy inference system controller which becomes an integrated method of approach is performed to control the error functions in order to yields excellent optimized gain values. After that, the control signals are applied to the input of voltage source converter of brushless direct current motor. With this control strategy, the harmonics and torque ripples are minimized. Based on the proposed control strategy, the speed and torque performance is analyzed. The effectiveness of the proposed technique is implemented in MATLAB/Simulink platform and evaluates their performance. The performance analysis of the proposed method is demonstrated and contrasted with the existing techniques such as bat algorithm, particle swarm optimization algorithm and ant–lion optimizer algorithm with fractional-order proportional–integral–derivative controller techniques.


Sign in / Sign up

Export Citation Format

Share Document