scholarly journals Biorefinery via Catalytic Upgraded Fast Pyrolysis of Biomass

2021 ◽  
Vol 65 (2-4) ◽  
pp. 250-255
Author(s):  
Ferruccio Trifirò

Energy can be produced from biomass by biochemical, biological and thermal process. Pyrolysis is a thermal process that operate at temperature between 400-600C in absence of oxygen or with very low amount, to produce a bio-oil, char and gas. The best technology is fast pyrolysis that produce higher amount of liquid bio-oil, particularly 75% of liquid, -at 500oC without oxygen, contact time lesser 2sec a drying of biomass till 10%, with dimension of particles of biomass of 3mm, using mainly bubbling fluid bed, However the bio-oil obtained with fast pyrolysis present a lot drawbacks: it presents a high amount of oxygen, high acidity, high viscosity, high moisture and chemical instability. Fast pyrolysis can be upgraded operating in the presence of a catalyst (in-situ) or with a downstream catalytic reactor to the that one of fast pyrolysis (ex situ). Besides it is possible upgrade the bio-oil transforming it in fuels and chemical products realizing the catalytic pyrolysis in presence of H2 (hydropyrolysis) or realizing hydrodeoxygenation reactions downstream the fast pyrolysis or using as reductants wastes from plastics, from rubber of tires or from organic wastes in order to realize a catalytic co-pyrolysis.

Author(s):  
Nuttapan Promsampao ◽  
Nuwong Chollacoop ◽  
Adisak Pattiya

Ex-situ catalytic fast pyrolysis (ex-CFP) of biomass applying ZSM-5 catalysts is an effective method for deoxygenating the pyrolysis vapour, thus producing low-oxygen bio-oil in a single step. The catalysts deactivate...


2021 ◽  
Vol 341 ◽  
pp. 125874
Author(s):  
Nichaboon Chaihad ◽  
Aisikaer Anniwaer ◽  
Aghietyas Choirun Az Zahra ◽  
Yutaka Kasai ◽  
Prasert Reubroycharoen ◽  
...  

2012 ◽  
Vol 26 (5) ◽  
pp. 2962-2967 ◽  
Author(s):  
Chih-Chiang Chang ◽  
Seng-Rung Wu ◽  
Chi-Cheng Lin ◽  
Hou-Peng Wan ◽  
Hom-Ti Lee

2010 ◽  
Vol 38 (5) ◽  
pp. 554-559 ◽  
Author(s):  
Jun DU ◽  
Ping LIU ◽  
Zuo-hua LIU ◽  
Da-gui SUN ◽  
Chang-yuan TAO

2018 ◽  
Vol 5 (11) ◽  
pp. 23456-23465
Author(s):  
Suchithra Thangalazhy-Gopakumar ◽  
Chi Wei Lee ◽  
Suyin Gan ◽  
Hoon Kiat Ng ◽  
Lai Yee Lee

2012 ◽  
Vol 512-515 ◽  
pp. 338-342 ◽  
Author(s):  
Ping Lan ◽  
Li Hong Lan ◽  
Tao Xie ◽  
An Ping Liao

In the preparation of hydrogen, the bio-oil from pyrolysis of biomass must be further upgraded (catalytic steam reforming)SO as to improve its quality.However the catalyst used in the steam reforming reaction is easy to lose its activity due to being coked' SO that it is important to study the coke formation and its efects on the catalyst activity in the steam reforming process.Fourier Transform Infrared Spectroscopy were used to analyze the precursor of coke on the catalyst Ni/MgO-La2O3-Al2O3 used in steam reforming reaction and the mechanism of coking Was also discussed based on it.The results indicate that precursors of coke deposited inside the pore of the molecular sieve are mainly paraffin, alcohols, aldehydes and ketones, and aromatic compounds.


Sign in / Sign up

Export Citation Format

Share Document