scholarly journals A New Early Stage Diabetic Retinopathy Diagnosis Model Using Deep Convolutional Neural Networks and Principal Component Analysis

2020 ◽  
Vol 37 (5) ◽  
pp. 711-722
Author(s):  
Mali Mohammedhasan ◽  
Harun Uğuz

Diabetic retinopathy (DR) is a disease of the retina, which leads over time to vision problems such retinal detachment, vitreous hemorrhage, glaucoma, and in worse cases leads to blindness, which can initially be controlled by periodic DR-screening. Early diagnosis will lead to greater control of the disease, whereas performing retinal examinations on all diabetic patients is an unattainable need, as diabetes is a chronic disease and its global prevalence has been steadily increasing over the past few decades. According to recent World Health Organization statistics, about 422 million people worldwide have diabetes, the majority living in low-and middle-income countries. This paper proposes a new strategy that brings the strength of convolutional neural networks (CNNs) to the diagnosis of DR. Coupled with using principal component analysis (PCA) that performs dimension reduction to improve the diagnostic accuracy, the proposed model exploiting edge-preserving guided image filtering (E-GIF) that performs as a contrast enhancement mechanism, and in addition to smoothing low gradient areas, it also accentuates strong edges. Diabetic retinopathy causes progressive damage to the blood vessels in the retina to the extent that it leaves traces and lesions in the tissues of the retina. These lesions appear in the form of edges and when processing retinal images, we seek to accentuate these edges to enable better diagnosis of diabetic retinopathy symptoms. A new CNN architecture with residual connections is used, which performs very well in diagnosing DR. The proposed model is named with RUnet-PCA: Residual U-net Deep CNN with Principal Component Analysis. The well-known AlexNet, VggNet-s, VggNet-16, VggNet-19, GoogleNet, and ResNet models were adopted for comparison with the proposed model. Publicly available Kaggle dataset was employed for training exploring the DR diagnosis accuracy. Experimental results show that the proposed RUnet-PCA model achieved a diagnosis accuracy of 98.44% and it was extremely robust and promising in comparison to other diagnosis methods.

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 958
Author(s):  
Jacques Olivier ◽  
Chris Aldrich

Reliable control of grinding circuits is critical to more efficient operation of concentrator plants. In many cases, operators still play a key role in the supervisory control of grinding circuits but are not always able to act timely to deal with disturbances, such as changes in the mill feed. Reliable process monitoring can play a major role in assisting operators to take more timely and reliable action. These monitoring systems need to be able to deal with what could be complex nonlinear dynamic behavior of comminution circuits. To this end, a dynamic process monitoring approach is proposed based on the use of convolutional neural networks. To take advantage of the availability of pretrained neural networks, the grinding circuit variables are treated as time series which can be converted into images. Features extracted from these networks are subsequently analyzed in a multivariate process monitoring framework with an underlying principal component model. Two variants of the approach based on convolutional neural networks are compared with dynamic principal component analysis on a simulated and real-world case studies. In the first variant, the pretrained neural network is used as a feature extractor without any further training. In the second variant, features are extracted following further training of the network in a synthetic binary classification problem designed to enhance the extracted features. The second approach yielded nominally better results than what could be obtained with dynamic principal component analysis and the approach using features extracted by transfer learning.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3527
Author(s):  
Melanija Vezočnik ◽  
Roman Kamnik ◽  
Matjaz B. Juric

Inertial sensor-based step length estimation has become increasingly important with the emergence of pedestrian-dead-reckoning-based (PDR-based) indoor positioning. So far, many refined step length estimation models have been proposed to overcome the inaccuracy in estimating distance walked. Both the kinematics associated with the human body during walking and actual step lengths are rarely used in their derivation. Our paper presents a new step length estimation model that utilizes acceleration magnitude. To the best of our knowledge, we are the first to employ principal component analysis (PCA) to characterize the experimental data for the derivation of the model. These data were collected from anatomical landmarks on the human body during walking using a highly accurate optical measurement system. We evaluated the performance of the proposed model for four typical smartphone positions for long-term human walking and obtained promising results: the proposed model outperformed all acceleration-based models selected for the comparison producing an overall mean absolute stride length estimation error of 6.44 cm. The proposed model was also least affected by walking speed and smartphone position among acceleration-based models and is unaffected by smartphone orientation. Therefore, the proposed model can be used in the PDR-based indoor positioning with an important advantage that no special care regarding orientation is needed in attaching the smartphone to a particular body segment. All the sensory data acquired by smartphones that we utilized for evaluation are publicly available and include more than 10 h of walking measurements.


Sign in / Sign up

Export Citation Format

Share Document