scholarly journals Depth Estimation of Single Defocused Images Based on Multi-Feature Fusion

2021 ◽  
Vol 38 (5) ◽  
pp. 1353-1360
Author(s):  
Fengyun Cao

Based on multi-feature fusion, this paper introduces a novel depth estimation method to suppress defocus and motion blurs, as well as focal plane ambiguity. Firstly, the node features formed by occlusion were fused to optimize image segmentation, and obtain the position relations between image objects. Next, the Gaussian gradient ratio between the defocused input image and the quadratic Gaussian blur was calculated to derive the edge sparse blur. After that, the fast guided filter was adopted to diffuse the sparse blur globally, and estimate the relative depth of the scene. Experimental results demonstrate that our method excellently resolves the ambiguity of depth estimation, and accurately overcomes the noise problem in real-time.

2021 ◽  
Vol 58 (6) ◽  
pp. 0615005
Author(s):  
郭克友 Guo Keyou ◽  
杨民 Yang Min ◽  
张沫 Zhang Mo ◽  
郭晓丽 Guo Xiaoli ◽  
李雪 Li Xue

2017 ◽  
Vol 2017 (5) ◽  
pp. 118-123
Author(s):  
Eu-Tteum Baek ◽  
Yo-Sung Ho

2016 ◽  
Vol 2016 (19) ◽  
pp. 1-6 ◽  
Author(s):  
Bart Goossens ◽  
Simon Donné ◽  
Jan Aelterman ◽  
Jonas De Vylder ◽  
Dirk Van Haerenborgh ◽  
...  

2009 ◽  
Vol 29 (8) ◽  
pp. 2074-2076
Author(s):  
Hua LI ◽  
Ming-xin ZHANG ◽  
Jing-long ZHENG

2017 ◽  
Vol 25 (04) ◽  
pp. 587-603 ◽  
Author(s):  
YUSUKE ASAI ◽  
HIROSHI NISHIURA

The effective reproduction number [Formula: see text], the average number of secondary cases that are generated by a single primary case at calendar time [Formula: see text], plays a critical role in interpreting the temporal transmission dynamics of an infectious disease epidemic, while the case fatality risk (CFR) is an indispensable measure of the severity of disease. In many instances, [Formula: see text] is estimated using the reported number of cases (i.e., the incidence data), but such report often does not arrive on time, and moreover, the rate of diagnosis could change as a function of time, especially if we handle diseases that involve substantial number of asymptomatic and mild infections and large outbreaks that go beyond the local capacity of reporting. In addition, CFR is well known to be prone to ascertainment bias, often erroneously overestimated. In this paper, we propose a joint estimation method of [Formula: see text] and CFR of Ebola virus disease (EVD), analyzing the early epidemic data of EVD from March to October 2014 and addressing the ascertainment bias in real time. To assess the reliability of the proposed method, coverage probabilities were computed. When ascertainment effort plays a role in interpreting the epidemiological dynamics, it is useful to analyze not only reported (confirmed or suspected) cases, but also the temporal distribution of deceased individuals to avoid any strong impact of time dependent changes in diagnosis and reporting.


2019 ◽  
Vol 55 (13) ◽  
pp. 742-745 ◽  
Author(s):  
Kang Yang ◽  
Huihui Song ◽  
Kaihua Zhang ◽  
Jiaqing Fan

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Zonglun Che ◽  
Jun Wang ◽  
Jing Zhu ◽  
Bingbing Zhang ◽  
Yang Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document