scholarly journals High numerical aperture metalens to generate an energy backflow

2020 ◽  
Vol 44 (5) ◽  
pp. 691-698
Author(s):  
V.V. Kotlyar ◽  
S.S. Stafeev ◽  
L. O'Faolain ◽  
M.V. Kotlyar

Using electronic beam lithography and reactive ion beam etching, a metalens is manufactured in a thin layer of amorphous silicon of a 130-nm depth, a 30-µm diameter, and a 633-nm focal length (equal to the illumination wavelength). The metalens is composed of 16 sectored subwavelength binary gratings with a 220-nm period. The uniqueness of this metalens is that when illuminated by left-handed circularly polarized light, it is capable of generating a left-handed circularly polarized vortex beam with a topological charge of 2, generating a second-order cylindrical vector beam when illuminated by linearly polarized light. Both for linear and circular incident polarization, an energy backflow is found to be generated in the vicinity of the tight focus. Transverse intensity distributions measured with a scanning near-field optical microscope near the focus of the metalens are in qualitative agreement with the intensity distributions calculated by the FDTD method. This confirms that a backward energy flow takes place at the focus of the metalens. A metalens generating an energy backflow near its focus is fabricated and characterized for the first time.

Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 975 ◽  
Author(s):  
Peizhen Qiu ◽  
Taiguo Lv ◽  
Yupei Zhang ◽  
Binbin Yu ◽  
Jiqing Lian ◽  
...  

Realizing multiple beam shaping functionalities in a single plasmonic device is crucial for photonic integration. Both plasmonic Bessel-like beams and bottle beams have potential applications in nanophotonics, particularly in plasmonic based circuits, near field optical trapping, and micro manipulation. Thus, it is very interesting to find new approaches for simultaneous generation of surface plasmon polariton Bessel-like beams and bottle beams in a single photonic device. Two types of polarization-dependent devices, which consist of arrays of spatially distributed sub-wavelength rectangular slits, are designed. The array of slits are specially arranged to construct an X-shaped or an IXI-shaped array, namely X-shaped device and IXI-shaped devices, respectively. Under illumination of circularly polarized light, plasmonic zero-order and first-order Bessel-like beams can be simultaneously generated on both sides of X-shaped devices. Plasmonic Bessel-like beam and bottle beam can be simultaneously generated on both sides of IXI-shaped devices. By changing the handedness of circularly polarized light, for both X-shaped and IXI-shaped devices, the positions of the generated plasmonic beams on either side of device can be dynamically interchanged.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3098
Author(s):  
Boyu Zhang ◽  
Sixiang Zhao ◽  
Yingying Yu ◽  
Ming Li ◽  
Liancheng Zhao ◽  
...  

Circularly polarized light (CPL) detection and polarization state recognition are required for a wide range of applications. Conventional polarization detection with optical components causes difficulties for miniaturization and integration. An effective design strategy is proposed for direct CPL detection with chiral material. Here, we realized direct CPL detection based on the combination of chiral photonic cellulose nanocrystal (CNC) and ultraviolet-sensitive ZnO photoconductive material. The CNC layer deposited by evaporation-induced self-assembly established the left-handed chiral nematic structure with a photonic bandgap (PBG) to recognize left-handed CPL (LCPL) and right-handed CPL (RCPL) at specific wavelengths. The PBG of CNC layer has been modulated by the adjustment of chiral nematic pitch to match the semiconductor bandgap of ZnO film in ultraviolet region. The photocurrents under RCPL and LCPL are 2.23 × 10−6 A and 1.77 × 10−6 A respectively and the anisotropy factor Δgpc of 0.23 is acquired for the CPL detection based on the chiral photonic CNC. This design provides a new approach to the detection of CPL polarization state with competitive performance.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022071
Author(s):  
V V Yatsyshen

Abstract The article presents the results of the analysis of the angular spectra of the ellipsometric parameters of the reflected wave when a circularly polarized light wave is incident on an anisotropic plate. The given dependences show a very high sensitivity of the ellipsometric parameters of the reflected light on the angle of incidence and the angle between the optical axis and the normal to the plate boundary. The energy reflection spectra themselves show much less variability when these parameters change. It should be especially emphasized the nature of the change in the ellipsometric angle Δ, which is responsible for the type of elliptical polarization - when Δ> 0, the polarization is left-handed, and when Δ <0, it is right-handed. It is shown that a thin anisotropic plate at certain angles can serve as a polarization converter of the incident radiation. The ellipsometry parameter ρ characterizes the degree of compression of the ellipse - when ρ = 1, the ellipse is transformed into a circle, and the light is circularly polarized in this case. Thus, a thin anisotropic plate can not only convert left-handed polarization to right-handed, but it can also control the very shape of the polarization ellipse. Such a plate can be used in conjunction with a layered medium, for example, a one-dimensional photonic crystal, to control the polarization of the incident circularly polarized light.


2017 ◽  
Vol 7 (4) ◽  
pp. 20160129 ◽  
Author(s):  
Luke T. McDonald ◽  
Ewan D. Finlayson ◽  
Bodo D. Wilts ◽  
Pete Vukusic

Helicoidal architectures comprising various polysaccharides, such as chitin and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly polarized reflectance and optical scattering from the cuticle of the beetle Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type helicoidal morphology within the beetle's exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic stratified medium, the inextricable connection between the colour appearance of C. smaragdina and the periodicity of its helicoidal rotation is shown. A close agreement between the model and the measured reflectance spectra is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed diffraction grating-like surface structure, which affects the diffuse appearance of the beetle's reflected colour, and therefore potentially enhances crypsis among the dense foliage of its rainforest habitat.


2021 ◽  
Vol 45 (4) ◽  
pp. 520-524
Author(s):  
S.S. Stafeev

We have shown that a reverse energy flow (negative projection of the Poynting vector onto the optical axis) at the sharp focus of an optical vortex with topological charge 2 and left-hand circular polarization arises because the axial spin flow has a negative projection onto the optical axis and is greater in magnitude than positive projection onto the optical axis of the orbital energy flow (canonical energy flow). Also, using the Richards-Wolf formulas, it is shown that when focusing a left-handed circularly polarized light, in the region of the on-axis reverse energy flow, the light is right-handed circularly polarized.


2008 ◽  
Vol 4 (S251) ◽  
pp. 311-312 ◽  
Author(s):  
V. Rosenbush ◽  
N. Kiselev ◽  
L. Kolokolova

AbstractPolarimetric observations demonstrated that all comets with significant values of circular polarization show predominantly left–handed circularly polarized light. We discuss the presence of homochiral organics in cometary materials as a source of the observed circular polarization. We have studied the effect of chirality on light–scattering properties of cometary dust considering particles that possess optical activity. Our investigations show that the cometary dust may include optically active materials which can be prebiological homochiral organics.


2014 ◽  
Vol 16 (8) ◽  
pp. 082001 ◽  
Author(s):  
E Libby ◽  
D E Azofeifa ◽  
M Hernández-Jiménez ◽  
C Barboza-Aguilar ◽  
A Solís ◽  
...  

Plasmonics ◽  
2020 ◽  
Author(s):  
Áron Sipos ◽  
Emese Tóth ◽  
Olivér A. Fekete ◽  
Mária Csete

AbstractIllumination of colloid sphere monolayers by circularly polarized beams enables the fabrication of concave patterns composed of circular nanohole miniarrays that can be transferred into convex metal nano-object patterns via a lift-off procedure. Unique spectral and near-field properties are achievable by controlling the geometry of the central nanoring and quadrumer of slightly rotated satellite nanocrescents and by selecting those azimuthal orientations that promote localized plasmon resonances. The spectral and near-field effects of hexagonal patterns composed of uniform gold nanorings and nanocrescents, which can be prepared by transferring masks fabricated by a perpendicularly and obliquely incident single homogeneous circularly polarized beam, were studied to uncover the supported localized plasmonic modes. Artificial rectangular patterns composed of a singlet nanoring and singlet nanocrescent as well as quadrumer of four nanocrescents were investigated to analyze the effect of nano-object interactions and lattice type. It was proven that all nanophotonical phenomena are governed by the azimuthal orientation independent localized resonance on the nanorings and by the C2, C1, and U resonances on the nanocrescents in case of $\bar {E}$ Ē -field direction perpendicular and parallel to their symmetry axes. The interaction between localized surface plasmon resonances on individual nano-objects is weak, whereas scattered photonic modes have a perturbative role at the Rayleigh anomaly only on the larger periodic rectangular pattern of miniarrays. Considerable fluorescence enhancement of dipolar emitters is achievable at spectral locations promoting the C and U resonances on the constituent nano-object.


2020 ◽  
Vol 6 (46) ◽  
pp. eabd3274
Author(s):  
A. Ishii ◽  
T. Miyasaka

Detection of circularly polarized light (CPL) has a high potential for development of various optical technologies. Conventional photodetectors require optical polarizers on the device to detect polarized light, and this causes substantial losses of sensitivity and resolution in light detection. Here, we report direct CPL detection by a photodiode using a helical one-dimensional (1D) structure of lead halide perovskites composed of naphthylethylamine-based chiral organic cations. The 1D structure with face-sharing (PbI6)4− octahedral chains whose helicity is largely affected by chiral cations shows intense circular dichroism (CD) signals over 3000 mdeg at 395 nm with the highly anisotropy factor (gCD) of 0.04. This high CD enables photocurrent detection with effective discrimination between left-handed and right-handed CPLs. The CPL detector based on this 1D perovskite achieved the highest polarization discrimination ratio of 25.4, which largely surpasses the direct detecting CPL devices (<4) using chiral plasmonic metamaterials and organic materials.


Sign in / Sign up

Export Citation Format

Share Document