scholarly journals Investigation of flexural behavior of steel fiber reinforced concrete and steel fiber orientation control during construction

2019 ◽  
Author(s):  
Maria Kolisnichenko
2021 ◽  
Vol 11 (1) ◽  
pp. 6662-6667
Author(s):  
B. Gebretsadik ◽  
K. Jadidi ◽  
V. Farhangi ◽  
M. Karakouzian

This study investigates the feasibility of the application of ultrasonic measurement to characterize Steel-Fiber-Reinforced Concrete (SFRC). Specifically, the effects of steel fiber content, age, moisture content, and fiber orientation on Ultrasonic-Pulse-Velocity (UPV) were investigated. In this regard, beam and cylindrical samples were fabricated with different steel fiber contents. The result indicated that for beam specimens the UPV increases with the addition of fiber up to 2% and decreases for higher fiber percentages. Additionally, the fiber orientation within the beam specimens influences the UPV measurements. For cylindrical samples, the rate of UPV decreased with the addition of steel fiber reinforcement. In addition, it was discovered that the curing period affects the magnitude of UPV.


2021 ◽  
Vol 11 (20) ◽  
pp. 9591
Author(s):  
Predrag Blagojević ◽  
Nikola Blagojević ◽  
Danijel Kukaras

One of the principle issues concerning the practical application of steel fiber reinforced concrete (SFRC) is the uncertainty related to its structural behavior, primarily caused by the partially random distribution and orientation of steel fibers in SFRC structural elements. This paper aims to provide a better understanding of how the variance of material properties of the SFRC affects the flexural behavior of SFRC beams. First, a distributed plasticity fiber finite element model of beam flexural behavior is proposed and validated. Then, probability distributions of selected material properties are defined based on existing probabilistic models and experimental results from the literature. Finally, a variance-based sensitivity analysis is performed using Sobol’ indices to identify uncertainties in material properties that contribute most to the uncertainties related to three characteristic points of a beam’s flexural behavior: first crack, yield, and collapse point. Sensitivity analysis is performed by surrogating the numerical model using polynomial chaos expansion. The variance in residual tensile strength is identified as the main contributor to the variance in the flexural behavior of an SFRC beam used in the case study.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yancong Zhang ◽  
Lingling Gao

Tire production is increasing every year due to the increase in vehicle sales. The generation and disposal of waste are inherent to life itself and have presented very serious problems to the human community in China. Recently, some research has been devoted to the use of tire-recycled steel fibers in concrete. This study is focusing on the use of tire-recycled steel fibers. Several volume ratios of tire-recycled steel fibers were used in concrete mix to fabricate and test. Reinforced concrete obtains evidence and satisfactory improvement by adding tire-recycled steel fibers, mostly in compressive strength, splitting strength, flexural tensile strength, and flexural toughness. The strength and flexural toughness of the tire-recycled steel fiber reinforced concrete are lower than those of industrial steel fibers. To obtain concrete with approximately the same strength or toughness, the content of tire-recycled steel fibers should be about 1%-2% higher than that of industrial steel fibers. In addition, the load-deflection curve tends to become fuller after the first crack, and the second peak of the load continues to increase. The steel fiber reinforced concrete is getting closer to the ideal elastic-plastic material.


Sign in / Sign up

Export Citation Format

Share Document