scholarly journals ERROR ESTIMATION OF MICROSEISMIC EVENT PARAMETERS

Author(s):  
D. N. Gapeev ◽  
M. I. Epov ◽  
A. A. Potapov

In the paper factors affecting error of microseismic events location are considered. Linearized error estimates are constructed, an accuracy of this approach is shown by the example. The influence of the  following factors is demonstrated by examples: coordinate measurement errors of the microseismic  antenna, errors in the model used for processing, and lack of information on the static corrections necessary to compensate for the low-velocity zone.

1970 ◽  
Vol 4 (1) ◽  
pp. 62-64 ◽  
Author(s):  
Don L. Anderson ◽  
Hartmut Spetzler

2012 ◽  
Vol 337-338 ◽  
pp. 25-38 ◽  
Author(s):  
Ralf T.J. Hansen ◽  
Michael G. Bostock ◽  
Nikolas I. Christensen

2021 ◽  
Author(s):  
JD Eccles ◽  
AK Gulley ◽  
PE Malin ◽  
CM Boese ◽  
John Townend ◽  
...  

© 2015. American Geophysical Union. All Rights Reserved. Fault Zone Guided Waves (FZGWs) have been observed for the first time within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Ongoing study of these phases provides the opportunity to monitor interseismic conditions in the fault zone. Distinctive dispersive seismic codas (~7-35Hz) have been recorded on shallow borehole seismometers installed within 20m of the principal slip zone. Near the central Alpine Fault, known for low background seismicity, FZGW-generating microseismic events are located beyond the catchment-scale partitioning of the fault indicating lateral connectivity of the low-velocity zone immediately below the near-surface segmentation. Initial modeling of the low-velocity zone indicates a waveguide width of 60-200m with a 10-40% reduction in S wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.


1979 ◽  
Vol 69 (2) ◽  
pp. 369-378
Author(s):  
George A. McMechan

abstract Plotting of three-dimensional ray surfaces in p-Δ-z space provides a means of determining p-Δ curves for any focal depth. A region of increasing velocity with depth is represented in p-Δ-z space by a trough, and a region of decreasing velocity, by a crest. Two sets of ray trajectories, the arrivals refracted outside a low-velocity zone, and the guided waves inside the zone, can be merged into a single set along the ray that splits into two at the top of the low-velocity zone. This ray is common to both sets. This construction provides continuity of the locus of ray turning points through the low-velocity zone and thus allows definition of p-Δ curves inside as well as outside the low-velocity zone.


1978 ◽  
Vol 41 (4) ◽  
pp. 670-683 ◽  
Author(s):  
P. J. Wyllie

Sign in / Sign up

Export Citation Format

Share Document