Characterization of Silver Nanoparticles Synthesized using Latex of Jatropha curcas and Lannea grandis

2017 ◽  
Vol 32 (3-4) ◽  
pp. 115 ◽  
Author(s):  
Santosh Kumar ◽  
Dipankar Halder ◽  
Atanu Mitra

This paper reports rapid and eco-friendly biosynthesis of silver nanoparticles using latex of two different plants Jatropha curcas (Jc) and Lannea grandis (Lg). Latex of these plants act as both reducing as well as capping agent. The surface plasmon resonance (SPR) band of as-synthesized silver nanocolloids (AgNC) appeared at 440 nm and 415 nm for the AgNC synthesized by latex of Jc and Lg, respectively. TEM images show that the latex of Lg produced smaller regular-shaped particles than those produced by latex of Jc. The influence of different synthesis parameters like concentration of latex, concentration of metal ion, time of reaction etc., on the morphology of the particles were also studied by monitoring UV-Vis spectra of the samples.

Molekul ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. 30 ◽  
Author(s):  
Gusrizal Gusrizal ◽  
Sri Juari Santosa ◽  
Eko Sri Kunarti ◽  
Bambang Rusdiarso

Silver nanoparticles capped with m-hydroxybenzoic acid and p-hydroxybenzoic have been successfully synthesized, but the long-term stability data of these silver nanoparticles are not available. In this paper, we report the stability of these two types of silver nanoparticles for a period of 40 weeks observation based on the change of surface plasmon resonance spectra of silver nanoparticles. Silver nanoparticles were synthesized by reduction of silver nitrate with m-hydroxybenzoic acid and p-hydroxybenzoic acid without addition of capping agent. The presence of silver nanoparticles was indicated by the appearance of yellow color due to the surface plasmon resonance of silver nanoparticles. The resulted silver nanoparticles were stored at room temperature and further UV-visible spectrophotometer was used to follow the change in surface plasmon resonance spectra. The surface plasmon resonance spectra of silver nanoparticles were overlapped for the first 18 weeks, followed by little change in the position of absorption maxima (lmax), peak intensity, and width of the absorption peak until the week of 40. Silver nanoparticles capped with m-hydroxybenzoic acid and silver nanoparticles capped with p-hydroxybenzoic acid were highly stable which should make them suitable for further applications. The results show the potential of m-hydroxybenzoic acid and p-hydroxybenzoic acid to become a new reducing agent in the synthesis of highly stable silver nanoparticles. The m-hydroxybenzoic acid and p-hydroxybenzoic acid appeared to act as both reducing and capping agent.


Langmuir ◽  
2006 ◽  
Vol 22 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Taewook Kang ◽  
Surin Hong ◽  
Hyun Jin Kim ◽  
Jungwoo Moon ◽  
Seogil Oh ◽  
...  

Plasmonics ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. 535-539 ◽  
Author(s):  
Kazuhiro Kawaguchi ◽  
Masahiro Saito ◽  
Katsumi Takahiro ◽  
Shunya Yamamoto ◽  
Masahito Yoshikawa

Sensors ◽  
2014 ◽  
Vol 14 (10) ◽  
pp. 18701-18710 ◽  
Author(s):  
J. Ortega-Mendoza ◽  
Alfonso Padilla-Vivanco ◽  
Carina Toxqui-Quitl ◽  
Placido Zaca-Morán ◽  
David Villegas-Hernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document